案例29:荷载-位移分析—入门案例
本案例介绍了乘数弹塑性分析类型的荷载-位移分析。这种类型分析是基于OptumG2特有的一个算法,它是在Sloan等(2000)之前使用传统算法结果的基础上得到验证的。验证示例如图29.1所示,考虑两种情况:关联流动(φ= 30°)和非关联流动,且剪胀角ψ减小到20°。在这两种情况下,采用Mohr-Coulomb土体模型,c = 1 kPa,E = 1.04 MPa,v = 0.3,土体和基础都是失重的。
图29.1 施加于失重的Mohr-Coulomb地基上条形基础的分布荷载
29.1 乘数弹塑性分析设置
乘数弹塑性分析需要定义一个或多个乘数载荷(集中荷载、分布荷载或体荷载),乘数载荷的大小将逐渐增加直到达到承载力临界值,或者通过适当的设置,直到达到预定的荷载或位移为止,相关设置可在工况管理器的高级设置下进行。另一方面,固定荷载则在整个分析中保持为指定的固定值。
荷载步是通过工况管理器设置里面的三个参数来控制,分别是:NE、NP和β。典型的荷载-位移曲线如图29.2所示,可以发现曲线最初近似于线弹性,然后逐渐变得越来越趋于塑性。NE和NP指定了这两个区域的大致步数,参数β用来步与步之间的荷载步的自动调整。对于β= 1,步长(工作时测量)不会变化,而更高的β值则意味着一个更积极的策略,随着步长的增加,部分曲线几乎没有变化。对于大多数问题,默认参数,NE = 10,NP = 10和β= 5,是一个很好的起点,增加荷载步的数量(即增加NE和NP)通常不会导致太大的改进。
图29.2 典型荷载-位移曲线(左)和设置区域(工况管理器)
初始应力可以在一个单独的工况阶段计算,然后通过“从”工况将其与乘数弹塑性工况联系起来。或者,如果没有指定“从”工况,高级设置下的初始状态选项提供了很多计算初始应力的选项。三种选项分别是:
1、默认。通过初始应力分析可以自动计算初始应力(见第I、II),所有乘数负载在这个阶段都被忽略。
2、自动。此设置与初始不稳定的问题有关,除非乘荷载载不同于零。在弹塑性计算的基础上,计算了达到稳定状态的应力场和最小荷载乘数。
3、人工。此设置和自动相当,除了初始荷载乘数由用户来指定。
如果指定了“从”工况,初始应力仅仅是来自“从”工况的最终应力。
在下面,没有指定“从”工况,使用的是默认选项。
29.2 数据记录
在加载过程中通常会记录各种数据,例如在某些点上的位移。在OptumG2中,如果在某一点定义记录该点位移、应力和其他各种量的结果点,荷载乘数会自动记录下来,之后可以使用结果栏中的XY绘图工具绘制这些结果。
29.3 结果
使用15-高斯节点、500个单元数量,NE = 15,NP = 5,如图29.3所示中的荷载-位移反应进行计算,可以看出,计算得到的结果和Sloan等(2000年)的结果保持高度一致。
图29.3 条形基础的荷载-位移计算与Sloan等(2000年)的比较
图29.4中显示的是分析结束后的变形和剪切耗散图,可以看到在关联的情况下,Sloan等(2000年)采用的区域大小有点太小,不能被认为是半无限的,尽管这与本分析的结论无关。
图29.4 变形和剪切耗散图