GEO5

GEO5

填方边坡设置三排钢管桩,桩顶布设钢筋混凝土联系梁,分析稳定性是用土坡模块还是抗滑桩模块?三排桩如何建模?

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 83 次浏览 • 2024-12-23 15:23 • 来自相关话题

geo5可以出英文计算书吗

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 77 次浏览 • 2024-12-23 14:09 • 来自相关话题

剩余下滑力曲线在GEO5中的使用

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 276 次浏览 • 2024-11-06 10:14 • 来自相关话题

       不平衡推力方法(隐式&显式)是国内计算边坡和滑坡稳定性时常用的方法,在GEO5中,除了可以采用该方法对边坡稳定性进行计算,软件还可以给出沿滑动面的剩余下滑力传递曲线。部分工程师在使用时并不清楚怎么查看该曲线,也不明白其中原理,本文对此进行说明。1、如何在GEO5中查看剩余下滑力曲线       首先需要明确的是,不是所有计算方法都能得到该曲线。剩余下滑力实际是通过条块间条间力的传递而获得,所以用户必须使用考虑条间力的分析方法才能看到该曲线,最常用的就是不平衡推力方法,隐式和显式都可以,如果采用bishop法是看不到该曲线的,其他的严格条分法,例如M-P,简布法和斯宾塞法也都能获取该曲线。       当选择考虑条间力的方法计算之后,点击软件界面左侧面板中的齿轮按钮,勾选分析中的“剩余下滑力”和“数值”选项,那么就能在图形显示窗口中查看剩余下滑力曲线。2、剩余下滑力曲线的绘制原则       GEO5软件中剩余下滑力曲线绘制原理参考了《铁路路基支挡结构设计规范》中滑坡推力曲线的绘制方法。规范中的滑坡推力曲线       曲线范围从滑动面的剪入口开始一直到剪出口为止,分段数量等于条块数量,如果是圆弧滑动,在GEO5软件中默认分为20个条块。GEO5中绘制的剩余下滑力曲线有几点需要说明:①  软件绘制的是剩余下滑力曲线,并不是滑坡推力曲线,剩余下滑力和抗滑桩所受的滑坡推力之间还需要考虑所在条块滑面角度的影响;②  剩余下滑力曲线的形状和数值大小跟滑面位置、岩土材料参数、支护力的大小、设计安全系数取值等因素相关;③  当剪入口位置的条块自身稳定性大于设计安全系数时,该条块则无剩余下滑力,依此类推,直到出现条块稳定性小于设计安全系数时,剩余下滑力从正值绘制,也就是剪入口位置的条块剩余下滑力一定为非负值;④  当计算滑动面整体稳定性大于设计安全系数时,剪出口位置的剩余下滑力会为负值,这里并没归为0,是为了方便用户查看边坡的支护或者自身稳定有多大的余量。加了支护后的剩余下滑力曲线3、剩余下滑力曲线的应用(1)确定下滑段和阻滑段位置       最常见的剩余下滑力曲线就是先上升后下降的弧线,当遇到地形复杂,同时坡面叠加超载和支护结构的时候,曲线可能存在多个上升段和下降段,这里的上升段可以认为是下滑段,下降段可以认为是阻滑段。(2)确定桩后滑坡推力       当采用抗滑桩支挡时,桩后的滑坡推力大小为该桩设计位置条块的剩余下滑力乘以滑面倾角的余弦值。       除了滑坡推力,桩前实际还受到滑体抗力的作用,很多用户对于滑体抗力如何计算并不清楚,这里顺带做个说明。       以下图为例,这里对应着滑面绘制了4条曲线。曲线a是极限状态的传递曲线,特点是剪出口和剪入口位置力都为0,表征边坡实际状况,也就是曲线以边坡实际的稳定系数来绘制;曲线b为推力传递曲线,从剪入口开始到剪出口,以边坡设计安全系数绘制;曲线c为抗力传递曲线,从剪出口开始反向到剪入口,同样以边坡设计安全系数绘制;曲线d为推力和抗力在抗滑桩位置处的叠加曲线,其中T为滑坡推力,P就是滑体抗力,d曲线为抗滑桩刚好达到边坡稳定系数等于设计安全系数的支撑效果,但不一定意味着桩的极限状态。       根据曲线可以看出T,P的数值跟设桩位置相关,同时跟设计安全系数的取值相关,简单理解为1.35的设计安全系数会比1.2的设计安全系数得到的推力更大。而抗力是否也会随着设计安全系数提高而增大呢,分两种情况,当桩前块体仍然满足增大后的设计安全系数时,抗力则相应增大,当桩前块体达不到增大后的设计安全系数时,抗力不仅不会增大,而是直接为0,这就是用户在查看抗滑桩受力时遇到桩前为0的原因。(3)其他应用       除了通过剩余下滑力曲线区分抗滑段与阻滑段,确定滑坡推力之外,还可以通过曲线下降的斜率判断不同区域的抗滑效果,哪些区段采用削方减载效果会更好,抗滑桩设置于哪些地段效率更高。尤其是对于滑坡整治项目,可以充分利用下滑力曲线进行辅助分析。 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp;不平衡推力方法(隐式&amp;显式)是国内计算边坡和滑坡稳定性时常用的方法,在GEO5中,除了可以采用该方法对边坡稳定性进行计算,软件还可以给出沿滑动面的剩余下滑力传递曲线。部分工程师在使用时并不清楚怎么查看该曲线,也不明白其中原理,本文对此进行说明。</p><p>1、如何在GEO5中查看剩余下滑力曲线</p><p>&nbsp; &nbsp; &nbsp; &nbsp;首先需要明确的是,不是所有计算方法都能得到该曲线。剩余下滑力实际是通过条块间条间力的传递而获得,所以用户必须使用考虑条间力的分析方法才能看到该曲线,最常用的就是不平衡推力方法,隐式和显式都可以,如果采用bishop法是看不到该曲线的,其他的严格条分法,例如M-P,简布法和斯宾塞法也都能获取该曲线。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730858794347194.png" alt="image.png" width="504" height="324" style="width: 504px; height: 324px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;当选择考虑条间力的方法计算之后,点击软件界面左侧面板中的齿轮按钮,勾选分析中的“剩余下滑力”和“数值”选项,那么就能在图形显示窗口中查看剩余下滑力曲线。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730858828364736.png" alt="image.png"/></p><p>2、剩余下滑力曲线的绘制原则</p><p>&nbsp; &nbsp; &nbsp; &nbsp;GEO5软件中剩余下滑力曲线绘制原理参考了《铁路路基支挡结构设计规范》中滑坡推力曲线的绘制方法。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730859036672758.png" alt="image.png"/></p><p style="text-align: center;">规范中的滑坡推力曲线</p><p>&nbsp; &nbsp; &nbsp; &nbsp;曲线范围从滑动面的剪入口开始一直到剪出口为止,分段数量等于条块数量,如果是圆弧滑动,在GEO5软件中默认分为20个条块。GEO5中绘制的剩余下滑力曲线有几点需要说明:</p><p>①&nbsp; 软件绘制的是剩余下滑力曲线,并不是滑坡推力曲线,剩余下滑力和抗滑桩所受的滑坡推力之间还需要考虑所在条块滑面角度的影响;</p><p>②&nbsp; 剩余下滑力曲线的形状和数值大小跟滑面位置、岩土材料参数、支护力的大小、设计安全系数取值等因素相关;</p><p>③&nbsp; 当剪入口位置的条块自身稳定性大于设计安全系数时,该条块则无剩余下滑力,依此类推,直到出现条块稳定性小于设计安全系数时,剩余下滑力从正值绘制,也就是剪入口位置的条块剩余下滑力一定为非负值;</p><p>④&nbsp; 当计算滑动面整体稳定性大于设计安全系数时,剪出口位置的剩余下滑力会为负值,这里并没归为0,是为了方便用户查看边坡的支护或者自身稳定有多大的余量。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730859156395858.png" alt="image.png"/></p><p style="text-align: center;">加了支护后的剩余下滑力曲线</p><p>3、剩余下滑力曲线的应用</p><p>(1)确定下滑段和阻滑段位置</p><p>&nbsp; &nbsp; &nbsp; &nbsp;最常见的剩余下滑力曲线就是先上升后下降的弧线,当遇到地形复杂,同时坡面叠加超载和支护结构的时候,曲线可能存在多个上升段和下降段,这里的上升段可以认为是下滑段,下降段可以认为是阻滑段。</p><p>(2)确定桩后滑坡推力</p><p>&nbsp; &nbsp; &nbsp; &nbsp;当采用抗滑桩支挡时,桩后的滑坡推力大小为该桩设计位置条块的剩余下滑力乘以滑面倾角的余弦值。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;除了滑坡推力,桩前实际还受到滑体抗力的作用,很多用户对于滑体抗力如何计算并不清楚,这里顺带做个说明。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;以下图为例,这里对应着滑面绘制了4条曲线。曲线a是极限状态的传递曲线,特点是剪出口和剪入口位置力都为0,表征边坡实际状况,也就是曲线以边坡实际的稳定系数来绘制;曲线b为推力传递曲线,从剪入口开始到剪出口,以边坡设计安全系数绘制;曲线c为抗力传递曲线,从剪出口开始反向到剪入口,同样以边坡设计安全系数绘制;曲线d为推力和抗力在抗滑桩位置处的叠加曲线,其中T为滑坡推力,P就是滑体抗力,d曲线为抗滑桩刚好达到边坡稳定系数等于设计安全系数的支撑效果,但不一定意味着桩的极限状态。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730859231836626.png" alt="image.png" width="432" height="421" style="width: 432px; height: 421px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据曲线可以看出T,P的数值跟设桩位置相关,同时跟设计安全系数的取值相关,简单理解为1.35的设计安全系数会比1.2的设计安全系数得到的推力更大。而抗力是否也会随着设计安全系数提高而增大呢,分两种情况,当桩前块体仍然满足增大后的设计安全系数时,抗力则相应增大,当桩前块体达不到增大后的设计安全系数时,抗力不仅不会增大,而是直接为0,这就是用户在查看抗滑桩受力时遇到桩前为0的原因。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730859262502300.png" alt="image.png"/></p><p>(3)其他应用</p><p>&nbsp; &nbsp; &nbsp; &nbsp;除了通过剩余下滑力曲线区分抗滑段与阻滑段,确定滑坡推力之外,还可以通过曲线下降的斜率判断不同区域的抗滑效果,哪些区段采用削方减载效果会更好,抗滑桩设置于哪些地段效率更高。尤其是对于滑坡整治项目,可以充分利用下滑力曲线进行辅助分析。</p>

关于悬臂桩支护土压力计算问题

库仑产品南京库仑张工 回答了问题 • 2 人关注 • 1 个回答 • 263 次浏览 • 2024-10-28 14:28 • 来自相关话题

锚杆挡墙用GEO5怎么设计,没有单独模块吗

库仑产品Chaos 回答了问题 • 4 人关注 • 2 个回答 • 2937 次浏览 • 2024-08-22 15:05 • 来自相关话题

GEO5某城市道路加筋土挡墙设计

库仑产品南京库仑张工 发表了文章 • 0 个评论 • 857 次浏览 • 2024-08-22 15:03 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、加筋土式挡土墙设计1 项目背景       项目位于西南某地级市,建设内容为城市次干道。在此段道路初步设计中,道路左侧K0+580—K0+880段为填方边坡,道路高程为1226.818m—1241.374m,最高填方约40m,对应桩号K0+680的高程为1132.816m。因道路外侧相邻地块功能用途未确定,无建筑布局方案,故该段填方边坡在初步设计时拟采用坡率法放坡+截、排水方案处理,分为五级边坡,坡比分别为1:1.5、1:1.75、1:1.75、1:2、1:2,坡面用人字形骨架和植草。初步设计坡率法放坡平面布置图       在道路施工图设计阶段,拟建道路外侧地块建筑布局方案为整个台地由西向东逐步上行,在道路路侧沿线布置了某研究中心及宿舍区,场地内设置了消防车道,消防车道宽度7m。拟建道路桩号K0+700对应消防车道高程约1200m,原地面高程为1192.5m,拟建道路高程为1225.0m,与道路外侧地块消防车道最大填方高差约25m,与现状地面高差约32.5m。因建设用地受限,初步设计拟采用的坡率法放坡处理方案不可行,须考虑挡墙支护方案。2 工程地质条件       根据区域地质资料及附近工程的岩土工程勘察资料,场区上覆土层主要为第四系全新统人工堆积填土层(Q4ml)、冲积层(Q4al)、坡洪积层(Qdl+pl)、坡残积层(Qdl+el),基岩为新近系上新统昔格达组碎屑岩(NQx)及晚二叠世(P3γ)侵入岩。地层自上而下为:       (1)、人工填土层为新近堆填,结构疏松,承载力低,工程性质差。       (2)、冲积层之②1淤泥质粉质粘土层呈流塑~软塑状,属高压缩性软弱土,承载力低,工程性质极差;②2细砂层呈饱和、松散状,承载力较低,工程性质较差。       (3)、昔格达组坡残积土之③1粉质粘土层呈可塑状,具有一定承载力,工程性质较好;③2粉质粘土层呈硬塑状,承载力较高,工程性质较好;其遇水易软化。      (4)、花岗岩坡残积层之④1砂质粘性土呈可塑状,具有一定承载力,工程性质较好;④2砂质粘性土呈硬塑状,承载力较高,工程性质好;其遇水易软化。      (5)、昔格达组碎屑岩⑤承载力高,工程性质好;其遇水易软化。      (6)、花岗岩之全、强风化带(⑥1、⑥2、⑥3)承载力高,工程性质好;土状风化岩遇水易软化。      (7)、花岗岩之中、微风化带(⑥4、⑥5)岩石强度较高,工程性质好。岩土体物理力学参数建议值如下:3支护设计方案       因拟建道路场地位于冲沟,基底地基条件较差,路面有纵坡。设计采用灌注桩地基处理+3阶加筋土挡墙+自然放坡路堤+排水的支护措施,台阶水平设置。加筋土挡墙长度约200m,单阶墙高不超过10m,墙面结合实际地形和道路纵坡进行调整,两阶墙间设2m宽平台。路堤坡顶设截水沟,挡墙台阶及墙底设排水沟。挡墙两端墙高较矮,设计采用重力式挡墙与现状山体相接。       加筋土挡墙墙面采用采用C30预制混凝土面板,加筋材料采用整体钢塑土工格栅,竖向层间距0.4m。加筋结构回填区填料使用项目开挖弃方,综合内摩擦角不小于35度,压实度不小于93%。每阶挡墙下方设0.4m厚级配良好的碎石水平排水层,台阶处铺设一布一膜后采用素砼封闭,防止雨水下渗。加筋挡墙墙顶设置4m米1:1.5自然放坡路堤。加筋土挡墙平面、立面布置图,剖面布置及大样图如下:加筋土挡墙设计平面布置图加筋土挡墙立面布置图加筋土挡墙剖面及大样图4加筋土挡墙设计计算4.1挡墙参数设置        本项目挡墙设计合理使用年限为50年,场地按地震按烈度7度(0.15g)考虑地震荷载作用。挡墙工程安全等级为一级,一般工况下稳定安全系数Fs≥1.35,地震工况下安全系数Fs≥1.25。墙顶荷载35KPa。计算未考虑道路外侧场地回填的影响,将其视为安全储备。        加筋结构回填区填料参数Φd=35.0°,C=0 kPa,γ=18 KN/m3;加筋区后填土参数Φ=30.0°,C=0 kPa,γ=18 KN/m3;挡墙底灌注桩地基处理区域考虑置换做法,其参数取:Φ=24.0°,C=25kPa,γ=20KN/m3。4.2挡墙参数设置        加筋材料设计采用重庆永固的整体钢塑土工格栅。整体钢塑土工格栅采用整体成型工艺,钢塑复合材质,肋带的主要受力元件为条带内的高强冷拔钢丝,蠕变极小;经抗老化处理的聚乙烯保护层,具有耐酸、碱、盐腐蚀的化学特性,破断伸长率小,强度高;条带交叉交点结点分离力要求大于500N。设计力学及物理尺寸指标必须满足交通行业标准《公路工程土工合成材料 土工格栅 第1部分:钢塑格栅》(JT/T925.1-2014)的要求。整体钢塑土工格栅规格及技术参数见下表:4.3计算结果       一般工况下加筋土挡墙抗倾覆、滑移、加筋材料抗拉、抗拔及整体稳定计算结果如下:5 现场施工照片6 总结       本项目采用分阶式加筋土挡墙设计方案,减少了道路建设的用地,为道路外建设场地争取了建设用地的最大化;减少挡墙对地基承载力的要求,同时柔性的加筋土结构能适应较大的地基变形,节省了地基处理费用。       GEO5岩土软件加筋土挡墙模块不仅能计算单阶直立的加筋土挡墙,挡墙计算可定义多个工况阶段和多层土,可验算加筋土挡墙的内部稳定性和整体稳定性,还能计算分阶带面坡的加筋土挡墙和陡坡,计算书界面美观,给岩土工程师的工作带来了极大的方便。 查看全部
<p>使用模块:GEO5土质边坡稳定性分析、加筋土式挡土墙设计<br/></p><p><strong>1 项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;项目位于西南某地级市,建设内容为城市次干道。在此段道路初步设计中,道路左侧K0+580—K0+880段为填方边坡,道路高程为1226.818m—1241.374m,最高填方约40m,对应桩号K0+680的高程为1132.816m。因道路外侧相邻地块功能用途未确定,无建筑布局方案,故该段填方边坡在初步设计时拟采用坡率法放坡+截、排水方案处理,分为五级边坡,坡比分别为1:1.5、1:1.75、1:1.75、1:2、1:2,坡面用人字形骨架和植草。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724308791616041.png" alt="image.png"/></p><p style="text-align: center;">初步设计坡率法放坡平面布置图</p><p>&nbsp; &nbsp; &nbsp; &nbsp;在道路施工图设计阶段,拟建道路外侧地块建筑布局方案为整个台地由西向东逐步上行,在道路路侧沿线布置了某研究中心及宿舍区,场地内设置了消防车道,消防车道宽度7m。拟建道路桩号K0+700对应消防车道高程约1200m,原地面高程为1192.5m,拟建道路高程为1225.0m,与道路外侧地块消防车道最大填方高差约25m,与现状地面高差约32.5m。因建设用地受限,初步设计拟采用的坡率法放坡处理方案不可行,须考虑挡墙支护方案。</p><p><strong>2 工程地质条件</strong><br/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据区域地质资料及附近工程的岩土工程勘察资料,场区上覆土层主要为第四系全新统人工堆积填土层(Q<sub>4ml</sub>)、冲积层(Q<sub>4al</sub>)、坡洪积层(Q<sub>dl+pl</sub>)、坡残积层(Q<sub>dl+el</sub>),基岩为新近系上新统昔格达组碎屑岩(N<sub>Qx</sub>)及晚二叠世(P<sub>3γ</sub>)侵入岩。地层自上而下为:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(1)、人工填土层为新近堆填,结构疏松,承载力低,工程性质差。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(2)、冲积层之②<sub>1</sub>淤泥质粉质粘土层呈流塑~软塑状,属高压缩性软弱土,承载力低,工程性质极差;②<sub>2</sub>细砂层呈饱和、松散状,承载力较低,工程性质较差。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(3)、昔格达组坡残积土之③<sub>1</sub>粉质粘土层呈可塑状,具有一定承载力,工程性质较好;</p><p>③<sub>2</sub>粉质粘土层呈硬塑状,承载力较高,工程性质较好;其遇水易软化。</p><p>&nbsp; &nbsp; &nbsp; (4)、花岗岩坡残积层之④<sub>1</sub>砂质粘性土呈可塑状,具有一定承载力,工程性质较好;④<sub>2</sub>砂质粘性土呈硬塑状,承载力较高,工程性质好;其遇水易软化。</p><p>&nbsp; &nbsp; &nbsp; (5)、昔格达组碎屑岩⑤承载力高,工程性质好;其遇水易软化。</p><p>&nbsp; &nbsp; &nbsp; (6)、花岗岩之全、强风化带(⑥<sub>1</sub>、⑥<sub>2</sub>、⑥<sub>3</sub>)承载力高,工程性质好;土状风化岩遇水易软化。</p><p>&nbsp; &nbsp; &nbsp; (7)、花岗岩之中、微风化带(⑥<sub>4</sub>、⑥<sub>5</sub>)岩石强度较高,工程性质好。</p><p>岩土体物理力学参数建议值如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724308954768398.png" alt="image.png" width="524" height="619" style="width: 524px; height: 619px;"/></p><p><strong>3支护设计方案</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;因拟建道路场地位于冲沟,基底地基条件较差,路面有纵坡。设计采用灌注桩地基处理+3阶加筋土挡墙+自然放坡路堤+排水的支护措施,台阶水平设置。加筋土挡墙长度约200m,单阶墙高不超过10m,墙面结合实际地形和道路纵坡进行调整,两阶墙间设2m宽平台。路堤坡顶设截水沟,挡墙台阶及墙底设排水沟。挡墙两端墙高较矮,设计采用重力式挡墙与现状山体相接。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;加筋土挡墙墙面采用采用C30预制混凝土面板,加筋材料采用整体钢塑土工格栅,竖向层间距0.4m。加筋结构回填区填料使用项目开挖弃方,综合内摩擦角不小于35度,压实度不小于93%。每阶挡墙下方设0.4m厚级配良好的碎石水平排水层,台阶处铺设一布一膜后采用素砼封闭,防止雨水下渗。加筋挡墙墙顶设置4m米1:1.5自然放坡路堤。加筋土挡墙平面、立面布置图,剖面布置及大样图如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724308996339943.png" alt="image.png"/></p><p style="text-align: center;">加筋土挡墙设计平面布置图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724309016655439.png" alt="image.png"/></p><p style="text-align: center;">加筋土挡墙立面布置图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724309032241639.png" alt="image.png"/></p><p style="text-align: center;">加筋土挡墙剖面及大样图</p><p><strong>4加筋土挡墙设计计算</strong></p><p>4.1挡墙参数设置</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 本项目挡墙设计合理使用年限为50年,场地按地震按烈度7度(0.15g)考虑地震荷载作用。挡墙工程安全等级为一级,一般工况下稳定安全系数Fs≥1.35,地震工况下安全系数Fs≥1.25。墙顶荷载35KPa。计算未考虑道路外侧场地回填的影响,将其视为安全储备。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 加筋结构回填区填料参数Φ<sub>d</sub>=35.0°,C=0 kPa,γ=18 KN/m<sup>3</sup>;加筋区后填土参数Φ=30.0°,C=0 kPa,γ=18 KN/m<sup>3</sup>;挡墙底灌注桩地基处理区域考虑置换做法,其参数取:Φ=24.0°,C=25kPa,γ=20KN/m<sup>3</sup>。</p><p>4.2挡墙参数设置</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 加筋材料设计采用重庆永固的整体钢塑土工格栅。整体钢塑土工格栅采用整体成型工艺,钢塑复合材质,肋带的主要受力元件为条带内的高强冷拔钢丝,蠕变极小;经抗老化处理的聚乙烯保护层,具有耐酸、碱、盐腐蚀的化学特性,破断伸长率小,强度高;条带交叉交点结点分离力要求大于500N。设计力学及物理尺寸指标必须满足交通行业标准《公路工程土工合成材料 土工格栅 第1部分:钢塑格栅》(JT/T925.1-2014)的要求。整体钢塑土工格栅规格及技术参数见下表:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724309081776486.png" alt="image.png"/></p><p>4.3计算结果</p><p>&nbsp; &nbsp; &nbsp; &nbsp;一般工况下加筋土挡墙抗倾覆、滑移、加筋材料抗拉、抗拔及整体稳定计算结果如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724309369827679.png" alt="image.png" width="381" height="225" style="width: 381px; height: 225px;"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724309391475508.png" alt="image.png"/></p><p><strong>5 现场施工照片</strong></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724309755908691.png" alt="image.png" width="431" height="321" style="width: 431px; height: 321px;"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724309800793181.png" alt="image.png" width="430" height="320" style="width: 430px; height: 320px;"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724310159167671.png" alt="image.png" width="435" height="344" style="width: 435px; height: 344px;"/></p><p><strong>6 总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本项目采用分阶式加筋土挡墙设计方案,减少了道路建设的用地,为道路外建设场地争取了建设用地的最大化;减少挡墙对地基承载力的要求,同时柔性的加筋土结构能适应较大的地基变形,节省了地基处理费用。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;GEO5岩土软件加筋土挡墙模块不仅能计算单阶直立的加筋土挡墙,挡墙计算可定义多个工况阶段和多层土,可验算加筋土挡墙的内部稳定性和整体稳定性,还能计算分阶带面坡的加筋土挡墙和陡坡,计算书界面美观,给岩土工程师的工作带来了极大的方便。</p>

GEO5某路堑边坡稳定性分析和支护结构设计

库仑产品南京库仑张工 发表了文章 • 0 个评论 • 858 次浏览 • 2024-08-22 14:38 • 来自相关话题

1 项目背景        本项目地处海南省中部山区,是进一步巩固新时代脱贫攻坚、全面建成小康社会成果的生态+景观路规范,旅游+交通路,幸福+致富路,采用双向四车道高速公路标准,设计速度80公里/小时,路基宽度25.5米,设计荷载为公路-I级。        本项目此段深挖方高边坡位于K14+500-K14+600右侧,最高高度为28.13m,地层岩性自上而下为粉质粘土、强风化砂岩碎石及全-中风化砂岩,下部一级边坡中风化砂岩整体性较好,中部二级边坡岩层较为破碎,刷坡后外露表面为全风化泥质砂岩,手掰即碎,产状倾角接近水平,处于8°~11°之间,为顺倾,表层以下约1m左右为强风化砂岩,无明显层理,上部为粉质粘土及全风化砂岩,高边坡坡形为一级边坡坡率为1:1.0,二级及以上边坡坡率为1:1.25,分级坡高为8m,平台宽2m。目前边坡开挖至二级边坡坡脚处,三级边坡已施作人字形骨架,经过约5-6天的连续暴雨期,此段高边坡二级边坡发生了开裂变形,裂缝宽约1.0~1.5m,从二级边坡坡顶(三级边坡坡脚)开裂,坡顶及二级坡坡体两侧出现了典型的拉张裂缝和剪切裂缝,前缘有较为明显的挤压变形,并因变形受阻形成了顺滑动方向的扇形压张裂缝,大致平行与变形方向,两侧呈放射状分布,在持续暴雨作用下有发生进一步滑动破坏的可能。高边坡现状情况2 高边坡变形原因定性分析       目前此高边坡的二级边坡拉张裂缝及剪切裂缝已形成,并在前缘发现了扇形压张裂缝,剪切裂缝未完全贯通,根据现状估计,再经过1-2场同等强度的持续降雨可发生滑动破坏,综合分析,边坡变形受多方面因素影响。(1)降雨       高边坡发生变形最主要的外界影响因素是降雨,该地区降雨强度高且降雨次数及持续时间长,根据降雨相关资料收集,平均降雨天数在20天以上,降雨对边坡主要存在以下影响:       (a)软化效应:由于降雨的渗入作用,破碎的边坡岩土体将会被软化。软化作用主要包括对结构面的润滑和对滑带土的软化。地下水和滑带土作用后,能改变滑带土的物理性质,如增加含水率和孔隙比。除此之外,还会发生滑带土溶解作用、水化作用、氧化还原作用、沉淀作用和离子交换等作用。本高边坡滑带土中含有大量粘土矿物,离子交换作用能改变这些矿物的含量。溶解作用能使滑带土内产生溶蚀裂隙、空隙及孔洞等现象。       (b)力学作用:水流在边坡体上流动时,会对边坡表面产生冲刷力,降雨会通过滑坡体已有的入渗通道(张拉裂缝、空洞等)下渗至滑体内部,使得滑带土和部分土体处于饱和状态,岩土体抗剪强度降低,由于岩层破碎节理裂隙发育,强降雨作用后逐渐形成贯通的裂隙带,沿裂隙带发生变形破坏。(2)排水不及时       虽施工刷坡防护较为及时,但由于降雨期持续时间长,降雨强度大导致坡脚仍有大量积水未及时排出,加之二级边坡坡顶平台正在施工平台排水沟中还未贯通,导致上部坡面汇水直接进入岩层节理裂隙,这也是导致高边坡产生急剧变形的原因。(3)岩土体性质       坡面岩土体本身较为破碎,节理裂隙多,松散的岩土体结构为后期降雨进入地下提供了有利的入渗通道,岩土体在地下水作用下进一步崩解、软化和泥化,从而形成潜在滑面。边坡后缘出现的拉张裂缝3 边坡支护设计及稳定性计算3.1支护方案设计        经方案比选后,选择如下设计方案。首先清除变形区域的坡体,保证高边坡段不存在不稳定岩土体,然后可根据高边坡各级坡的岩土体性质对其采用合适的坡率+锚杆(索)支护的方案,坡率由稳定性计算确定,一级边坡维持原设计1:1坡率,对坡顶开挖宽平台后做10cm混凝土硬化,搭配平台排水沟,对一级坡采用厚层基材喷射植被防护,由于平台宽9.0m且平台硬化,上部边坡与一级边坡互不影响,暴雨期雨水无法进入边坡后缘,稳定性高,方案优势明显,清坡后二级坡与三级坡坡率为1:1,并施打预应力锚杆框架梁,起到固脚强腰作用(根据稳定性分析结果视潜在滑动面深度及岩土层情况也可选择锚杆框架梁),由于岩质边坡较为破碎,采用压力分散型锚杆,不仅工作时锚固段灌浆体剪应力较均匀,可有效抑制锚杆的蠕变,而且锚杆全长采用无粘结钢绞线,锚杆工作时灌浆体处于受压状态,因而具有良好的防腐性能,是目前在软弱破碎岩体和土体锚固工程中大力推广使用的锚杆。3.2边坡稳定性分析流程(1)分析工况       边坡稳定性分析工况根据项目特点及边坡基本特征,共分为2组计算工况。天然工况下的稳定性,考虑天然自重+地下水位的组合,无地下水时考虑天然自重情况下的稳定性。暴雨工况下的稳定性及地震工况下的稳定性,根据路基规范3.6.11条条文说明要求作为校核工况,对暴雨工况下边坡采用地勘报告提供的饱和抗剪强度进行计算。其中路基安全系数取值遵循以下原则:       ①与结构重要性及破坏后修复的难易程度相适应,主要考虑与公路等级相联系;       ②与采用的稳定性分析方法相匹配;       ③以正常工况控制设计,以非正常工况进行校核设计。(2)边坡安全系数判别标准       对边坡的稳定性分析评价,边坡的稳定性安全系数值参考《公路路基设计规范》(JTG D30-2015)、《建筑边坡工程技术规范》(GB50330-2013)等规范的要求,结合边坡稳定性分析既有经验综合确定。具体确定过程如下:       ①稳定分析的工况、内容       本次边坡稳定性计算考虑以下两种工况:       A.正常工况:边坡处于天然状态下的工况。       B.非正常工况Ⅰ:边坡处于暴雨或连续降雨下的工况。       ②根据《公路路基设计规范》(JTG D30-2015),综合考虑且根据现场的宏观判断,路堑挖方边坡按照正常工况下稳定安全系数大于1.30、非正常工况Ⅰ稳定安全系数大于1.15进行控制。(3)岩土物理力学参数选取3.3边坡稳定性计算(1)清方后稳定性计算       根据计算结果,最不利滑动面为二、三、四级边坡一同整体滑动,稳定系数为0.76,剩余下滑力为625.51kN/m,剩余下滑力倾角为10.11°,二级边坡单级区域稳定系数为0.89,剩余下滑力89.66KN/m,剩余下滑力倾角为8.19°,三级边坡单级区域稳定系数为0.89,剩余下滑力88.90KN/m,剩余下滑力倾角为8.63°,二、三级边坡区域整体稳定系数为0.76,剩余下滑力361.86kN/m,剩余下滑力倾角为11.25°,由于岩体遇水后强度降低很多,暴雨工况下最不利稳定系数更小,因此应对二级、三级边坡均进行预应力锚杆框架梁防护,采用有限元进行校核天然工况,计算结果为稳定系数Fs=0.79,相较极限平衡法稍大,基本一致,满足要求。GEO5和Optum G2对清方后的边坡稳定性计算结果(2)支护后稳定性计算       根据《公路路基设计规范》(JTG D30-2015)及稳定性试算综合确定预应力锚杆设计锚固力不小于500kN/m,结合潜在滑动面深度和抗拉抗拔计算,二、三级坡预应力锚杆自由段长度取13m,锚固段长度取6m。       经计算,加固后高边坡正常工况下稳定系数为1.37>1.30,暴雨工况下稳定系数为1.22>1.15,满足设计要求。加固后天然工况计算结果加固后暴雨工况计算结果4总结        本项目是路堑边坡开挖过程中因变形而进行的高边坡治理设计。一级坡维持原设计1:1坡率,对坡顶开挖宽平台后做10cm混凝土硬化,搭配平台排水沟,对一级坡采用厚层基材喷射植被防护,由于平台宽9.0m且平台硬化,上部边坡与一级边坡互不影响,暴雨期雨水无法进入边坡后缘,稳定性高,方案优势明显,清坡后二级坡与三级坡坡率为1:1,并施打预应力锚杆框架梁,起到固脚强腰作用,由于岩质边坡较为破碎,采用压力分散型锚杆。顶部粉质粘土层设计坡率为1:1.25,采用人字形骨架植草防护。       经反分析计算,得到变形体在天然工况及连续暴雨工况下的物理力学参数,支护加固前天然工况下稳定系数为0.76,设置预应力锚杆框架梁后天然工况下稳定系数为1.37>1.30,暴雨工况下稳定系数为1.22>1.15,满足设计要求。 查看全部
<p><strong>1 项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 本项目地处海南省中部山区,是进一步巩固新时代脱贫攻坚、全面建成小康社会成果的生态+景观路规范,旅游+交通路,幸福+致富路,采用双向四车道高速公路标准,设计速度80公里/小时,路基宽度25.5米,设计荷载为公路-I级。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 本项目此段深挖方高边坡位于K14+500-K14+600右侧,最高高度为28.13m,地层岩性自上而下为粉质粘土、强风化砂岩碎石及全-中风化砂岩,下部一级边坡中风化砂岩整体性较好,中部二级边坡岩层较为破碎,刷坡后外露表面为全风化泥质砂岩,手掰即碎,产状倾角接近水平,处于8°~11°之间,为顺倾,表层以下约1m左右为强风化砂岩,无明显层理,上部为粉质粘土及全风化砂岩,高边坡坡形为一级边坡坡率为1:1.0,二级及以上边坡坡率为1:1.25,分级坡高为8m,平台宽2m。目前边坡开挖至二级边坡坡脚处,三级边坡已施作人字形骨架,经过约5-6天的连续暴雨期,此段高边坡二级边坡发生了开裂变形,裂缝宽约1.0~1.5m,从二级边坡坡顶(三级边坡坡脚)开裂,坡顶及二级坡坡体两侧出现了典型的拉张裂缝和剪切裂缝,前缘有较为明显的挤压变形,并因变形受阻形成了顺滑动方向的扇形压张裂缝,大致平行与变形方向,两侧呈放射状分布,在持续暴雨作用下有发生进一步滑动破坏的可能。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724308092900167.png" alt="image.png"/></p><p style="text-align: center;">高边坡现状情况</p><p><strong>2 高边坡变形原因定性分析</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;目前此高边坡的二级边坡拉张裂缝及剪切裂缝已形成,并在前缘发现了扇形压张裂缝,剪切裂缝未完全贯通,根据现状估计,再经过1-2场同等强度的持续降雨可发生滑动破坏,综合分析,边坡变形受多方面因素影响。</p><p>(1)降雨</p><p>&nbsp; &nbsp; &nbsp; &nbsp;高边坡发生变形最主要的外界影响因素是降雨,该地区降雨强度高且降雨次数及持续时间长,根据降雨相关资料收集,平均降雨天数在20天以上,降雨对边坡主要存在以下影响:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(a)软化效应:由于降雨的渗入作用,破碎的边坡岩土体将会被软化。软化作用主要包括对结构面的润滑和对滑带土的软化。地下水和滑带土作用后,能改变滑带土的物理性质,如增加含水率和孔隙比。除此之外,还会发生滑带土溶解作用、水化作用、氧化还原作用、沉淀作用和离子交换等作用。本高边坡滑带土中含有大量粘土矿物,离子交换作用能改变这些矿物的含量。溶解作用能使滑带土内产生溶蚀裂隙、空隙及孔洞等现象。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(b)力学作用:水流在边坡体上流动时,会对边坡表面产生冲刷力,降雨会通过滑坡体已有的入渗通道(张拉裂缝、空洞等)下渗至滑体内部,使得滑带土和部分土体处于饱和状态,岩土体抗剪强度降低,由于岩层破碎节理裂隙发育,强降雨作用后逐渐形成贯通的裂隙带,沿裂隙带发生变形破坏。</p><p>(2)排水不及时</p><p>&nbsp; &nbsp; &nbsp; &nbsp;虽施工刷坡防护较为及时,但由于降雨期持续时间长,降雨强度大导致坡脚仍有大量积水未及时排出,加之二级边坡坡顶平台正在施工平台排水沟中还未贯通,导致上部坡面汇水直接进入岩层节理裂隙,这也是导致高边坡产生急剧变形的原因。</p><p>(3)岩土体性质</p><p>&nbsp; &nbsp; &nbsp; &nbsp;坡面岩土体本身较为破碎,节理裂隙多,松散的岩土体结构为后期降雨进入地下提供了有利的入渗通道,岩土体在地下水作用下进一步崩解、软化和泥化,从而形成潜在滑面。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724308176981671.png" alt="image.png" width="330" height="446" style="width: 330px; height: 446px;"/></p><p style="text-align: center;">边坡后缘出现的拉张裂缝</p><p><strong>3 边坡支护设计及稳定性计算</strong></p><p>3.1支护方案设计</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 经方案比选后,选择如下设计方案。首先清除变形区域的坡体,保证高边坡段不存在不稳定岩土体,然后可根据高边坡各级坡的岩土体性质对其采用合适的坡率+锚杆(索)支护的方案,坡率由稳定性计算确定,一级边坡维持原设计1:1坡率,对坡顶开挖宽平台后做10cm混凝土硬化,搭配平台排水沟,对一级坡采用厚层基材喷射植被防护,由于平台宽9.0m且平台硬化,上部边坡与一级边坡互不影响,暴雨期雨水无法进入边坡后缘,稳定性高,方案优势明显,清坡后二级坡与三级坡坡率为1:1,并施打预应力锚杆框架梁,起到固脚强腰作用(根据稳定性分析结果视潜在滑动面深度及岩土层情况也可选择锚杆框架梁),由于岩质边坡较为破碎,采用压力分散型锚杆,不仅工作时锚固段灌浆体剪应力较均匀,可有效抑制锚杆的蠕变,而且锚杆全长采用无粘结钢绞线,锚杆工作时灌浆体处于受压状态,因而具有良好的防腐性能,是目前在软弱破碎岩体和土体锚固工程中大力推广使用的锚杆。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724308229263671.png" alt="image.png"/></p><p>3.2边坡稳定性分析流程</p><p>(1)分析工况</p><p>&nbsp; &nbsp; &nbsp; &nbsp;边坡稳定性分析工况根据项目特点及边坡基本特征,共分为2组计算工况。天然工况下的稳定性,考虑天然自重+地下水位的组合,无地下水时考虑天然自重情况下的稳定性。暴雨工况下的稳定性及地震工况下的稳定性,根据路基规范3.6.11条条文说明要求作为校核工况,对暴雨工况下边坡采用地勘报告提供的饱和抗剪强度进行计算。其中路基安全系数取值遵循以下原则:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①与结构重要性及破坏后修复的难易程度相适应,主要考虑与公路等级相联系;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②与采用的稳定性分析方法相匹配;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;③以正常工况控制设计,以非正常工况进行校核设计。</p><p>(2)边坡安全系数判别标准</p><p>&nbsp; &nbsp; &nbsp; &nbsp;对边坡的稳定性分析评价,边坡的稳定性安全系数值参考《公路路基设计规范》(JTG D30-2015)、《建筑边坡工程技术规范》(GB50330-2013)等规范的要求,结合边坡稳定性分析既有经验综合确定。具体确定过程如下:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①稳定分析的工况、内容</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次边坡稳定性计算考虑以下两种工况:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;A.正常工况:边坡处于天然状态下的工况。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;B.非正常工况Ⅰ:边坡处于暴雨或连续降雨下的工况。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②根据《公路路基设计规范》(JTG D30-2015),综合考虑且根据现场的宏观判断,路堑挖方边坡按照正常工况下稳定安全系数大于1.30、非正常工况Ⅰ稳定安全系数大于1.15进行控制。</p><p>(3)岩土物理力学参数选取</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724308334751812.png" alt="image.png" width="447" height="245" style="width: 447px; height: 245px;"/></p><p>3.3边坡稳定性计算</p><p>(1)清方后稳定性计算</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据计算结果,最不利滑动面为二、三、四级边坡一同整体滑动,稳定系数为0.76,剩余下滑力为625.51kN/m,剩余下滑力倾角为10.11°,二级边坡单级区域稳定系数为0.89,剩余下滑力89.66KN/m,剩余下滑力倾角为8.19°,三级边坡单级区域稳定系数为0.89,剩余下滑力88.90KN/m,剩余下滑力倾角为8.63°,二、三级边坡区域整体稳定系数为0.76,剩余下滑力361.86kN/m,剩余下滑力倾角为11.25°,由于岩体遇水后强度降低很多,暴雨工况下最不利稳定系数更小,因此应对二级、三级边坡均进行预应力锚杆框架梁防护,采用有限元进行校核天然工况,计算结果为稳定系数Fs=0.79,相较极限平衡法稍大,基本一致,满足要求。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724308528137107.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724308541583105.png" alt="image.png"/></p><p style="text-align: center;">GEO5和Optum G2对清方后的边坡稳定性计算结果</p><p>(2)支护后稳定性计算</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据《公路路基设计规范》(JTG D30-2015)及稳定性试算综合确定预应力锚杆设计锚固力不小于500kN/m,结合潜在滑动面深度和抗拉抗拔计算,二、三级坡预应力锚杆自由段长度取13m,锚固段长度取6m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;经计算,加固后高边坡正常工况下稳定系数为1.37>1.30,暴雨工况下稳定系数为1.22>1.15,满足设计要求。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724308582276446.png" alt="image.png"/></p><p style="text-align: center;">加固后天然工况计算结果</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724308601474414.png" alt="image.png"/></p><p style="text-align: center;">加固后暴雨工况计算结果</p><p><strong>4总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 本项目是路堑边坡开挖过程中因变形而进行的高边坡治理设计。一级坡维持原设计1:1坡率,对坡顶开挖宽平台后做10cm混凝土硬化,搭配平台排水沟,对一级坡采用厚层基材喷射植被防护,由于平台宽9.0m且平台硬化,上部边坡与一级边坡互不影响,暴雨期雨水无法进入边坡后缘,稳定性高,方案优势明显,清坡后二级坡与三级坡坡率为1:1,并施打预应力锚杆框架梁,起到固脚强腰作用,由于岩质边坡较为破碎,采用压力分散型锚杆。顶部粉质粘土层设计坡率为1:1.25,采用人字形骨架植草防护。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;经反分析计算,得到变形体在天然工况及连续暴雨工况下的物理力学参数,支护加固前天然工况下稳定系数为0.76,设置预应力锚杆框架梁后天然工况下稳定系数为1.37>1.30,暴雨工况下稳定系数为1.22>1.15,满足设计要求。</p>

GEO5某厂房地基固结沉降分析

库仑产品南京库仑张工 发表了文章 • 0 个评论 • 746 次浏览 • 2024-08-22 14:26 • 来自相关话题

使用模块:GEO5地基固结沉降分析1 工程地质条件       根据补充勘察资料,本项目地层总共分4个地层,从上往下分别为填土、淤泥质粉质黏土、粉质黏土层、强~中风化石灰岩。分层描述如下:       ①层混凝土层(Q4ml):灰、以混凝土为主,内含钢筋。       ②层填土(Q4ml):杂色、灰褐色,湿。主要成分以可塑状粉质黏土为主,局部含有少量碎石,该层有大量水泥浆分布。       ③层淤泥质粉质黏土(Q4al+pl):青灰色,饱和,软塑状态,局部有粉砂夹层,含贝壳残积物,该层局部含水泥浆。       ③1层粉质黏土(Q4al+pl):青灰色,湿,可塑~硬可塑状态,含有粉土及粉砂,自上而上递增。       ④1 层强风化石灰岩(∈):灰白色、灰褐色,泥晶结构,岩芯呈碎块状、砂砾及碎屑状,含方解石,岩体破碎~较破碎,该层有多个小溶洞,由粘性土充填,裂隙多,溶蚀现象严重。       ④2 层中风化石灰岩(∈):灰白色、灰褐色,泥晶~微晶结构,中厚~厚层构造,岩芯多呈短柱状及饼状,局部为碎块状,沿层面断开。属下伏基岩层,分布于整个场地。2 边界条件       本项目沉降计算主要包括填土层的压缩沉降、淤泥质粉质黏土的压缩固结沉降和粉质黏土层的压缩沉降。因地区基岩埋深为15~17m,上部设计荷载为120kN/m,附加荷载可传递至基岩层顶以上所有土层。因此基岩层以上所有土层均需考虑压缩沉降。结合项目的设计荷载,地坪的附加荷载按120kpa均布荷载考虑。因场坪上存在50cm的水泥混凝土层,且混凝土层与管桩顶相连。考虑管桩对水泥混凝土层存在一定支撑作用,所以本次计算不考虑混凝土层附加荷载。根据原设计,水泥混凝土场坪底部换填1.5m的砂石土,本次计算予以考虑。3 参数选取及建模分析       本次计算采用GEO5 地基固结沉降分析模块,依据钻孔进行地层建模。加固前参数选取       经计算,未加固前土层0-6月预压期沉降为38.03cm,6月到10年的沉降为56.23cm,工后沉降为23.71cm,计算结果及固结曲线如下:未加固前计算结果和固结曲线       依据项目的加固方案,对场坪区采用压密注浆加固,单孔有效加固直径为50cm,间距为1.0~1.5m,计算按最不利情况1.5m考虑,桩按梅花形布孔,加密注浆深度为10m。考虑注浆加固对填土层效果较好,淤泥质粉质黏土层效果一般。因此本项目可靠的加固深度为6m,6-10m范围的加固效果一般,在后期加固参数选取中体现。加固后参数选取       经计算,加固后土层10年的总沉降为40.88cm,工后沉降为10.21cm,计算结果如下:各阶段固结度和沉降值表加固后的计算结果4 总结       本次项目主要是计算某厂房地基天然和加固后的固结及沉降情况。采用GEO5固结沉降分析模块,建模快捷,可以根据需要设置计算断面,最新版本还可以进行竖向排水砂井的设置。 查看全部
<p>使用模块:GEO5地基固结沉降分析</p><p><strong>1 工程地质条件</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据补充勘察资料,本项目地层总共分4个地层,从上往下分别为填土、淤泥质粉质黏土、粉质黏土层、强~中风化石灰岩。分层描述如下:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①层混凝土层(Q<sub>4</sub><sup>ml</sup>):灰、以混凝土为主,内含钢筋。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②层填土(Q<sub>4</sub><sup>ml</sup>):杂色、灰褐色,湿。主要成分以可塑状粉质黏土为主,局部含有少量碎石,该层有大量水泥浆分布。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;③层淤泥质粉质黏土(Q<sub>4</sub><sup>al+pl</sup>):青灰色,饱和,软塑状态,局部有粉砂夹层,含贝壳残积物,该层局部含水泥浆。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;③<sub>1</sub>层粉质黏土(Q<sub>4</sub><sup>al+pl</sup>):青灰色,湿,可塑~硬可塑状态,含有粉土及粉砂,自上而上递增。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;④<sub>1</sub> 层强风化石灰岩(∈):灰白色、灰褐色,泥晶结构,岩芯呈碎块状、砂砾及碎屑状,含方解石,岩体破碎~较破碎,该层有多个小溶洞,由粘性土充填,裂隙多,溶蚀现象严重。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;④<sub>2</sub> 层中风化石灰岩(∈):灰白色、灰褐色,泥晶~微晶结构,中厚~厚层构造,岩芯多呈短柱状及饼状,局部为碎块状,沿层面断开。属下伏基岩层,分布于整个场地。</p><p><strong>2 边界条件</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本项目沉降计算主要包括填土层的压缩沉降、淤泥质粉质黏土的压缩固结沉降和粉质黏土层的压缩沉降。因地区基岩埋深为15~17m,上部设计荷载为120kN/m,附加荷载可传递至基岩层顶以上所有土层。因此基岩层以上所有土层均需考虑压缩沉降。结合项目的设计荷载,地坪的附加荷载按120kpa均布荷载考虑。因场坪上存在50cm的水泥混凝土层,且混凝土层与管桩顶相连。考虑管桩对水泥混凝土层存在一定支撑作用,所以本次计算不考虑混凝土层附加荷载。根据原设计,水泥混凝土场坪底部换填1.5m的砂石土,本次计算予以考虑。</p><p><strong>3 参数选取及建模分析</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次计算采用GEO5 地基固结沉降分析模块,依据钻孔进行地层建模。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307685651955.png" alt="image.png"/></p><p>加固前参数选取</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307653914933.png" alt="image.png" width="480" height="227" style="width: 480px; height: 227px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;经计算,未加固前土层0-6月预压期沉降为38.03cm,6月到10年的沉降为56.23cm,工后沉降为23.71cm,计算结果及固结曲线如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307729273270.png" alt="image.png"/></p><p style="text-align: center;">未加固前计算结果和固结曲线</p><p>&nbsp; &nbsp; &nbsp; &nbsp;依据项目的加固方案,对场坪区采用压密注浆加固,单孔有效加固直径为50cm,间距为1.0~1.5m,计算按最不利情况1.5m考虑,桩按梅花形布孔,加密注浆深度为10m。考虑注浆加固对填土层效果较好,淤泥质粉质黏土层效果一般。因此本项目可靠的加固深度为6m,6-10m范围的加固效果一般,在后期加固参数选取中体现。</p><p>加固后参数选取</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307769752421.png" alt="image.png" width="462" height="254" style="width: 462px; height: 254px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;经计算,加固后土层10年的总沉降为40.88cm,工后沉降为10.21cm,计算结果如下:</p><p style="text-align: center;">各阶段固结度和沉降值表</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307815395530.png" alt="image.png" width="386" height="267" style="width: 386px; height: 267px;"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307836682913.png" alt="image.png"/></p><p style="text-align: center;">加固后的计算结果</p><p><strong>4 总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次项目主要是计算某厂房地基天然和加固后的固结及沉降情况。采用GEO5固结沉降分析模块,建模快捷,可以根据需要设置计算断面,最新版本还可以进行竖向排水砂井的设置。</p>

GEO5某矿渣边坡支护设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 792 次浏览 • 2024-08-22 14:18 • 来自相关话题

1 项目背景       某矿区地下水污染综合防治工程受甲方委托在矿区勘查工作和收集周边工程建设勘查资料的基础上,遵循地质灾害防治的基本原则,对矿区矿渣堆整形、矿渣堆及堆体两侧坡面护坡、拦渣坝、截排水沟、不稳定边坡支护、危岩清除等防治工程从安全有效性、技术可行性、经济合理性进行论证,提出具有针对性、系统性的最优综合防治工程方案。2 工程地质条件       针对矿区矿渣堆边坡开展调勘查,共划分8个不稳定斜坡,分别进行坡面稳定性分析评价,通过钻探取样及现场大重度试验及现场2处已经滑移边坡坡面反演综合确定不稳定斜坡物质组成成分为:       ①素填土(角砾为主):分布于矿区坡面中下部,参数取值天然状态:重度=19.0kN/m3,C=6.0kPa,φ=28.00°,饱和状态:重度=19.6kN/m3,C=0.5kPa,φ=21.00°;       ②素填土(碎石为主):分布于矿区坡面上部,参数取值天然状态:重度=19.2kN/m3,C=2.0kPa,φ=31.00°,饱和状态:重度=19.8kN/m3,C=1.2kPa,φ=27.00°;       ③强风化片岩:分布于矿渣堆下部,厚2-8m,天然单轴抗压强度14MPa,饱和单轴抗压强度10.4MPa;       ④中风化片岩:分布于强风化基岩下,分布于3-10m以下,天然单轴抗压强度32.62MPa,饱和单轴抗压强度16.54MPa;       其岩土体的渗透系数通过钻孔压水试验及现场双环实验确定①层素填土地表矿渣渗透系数值0.14~0.22cm/s,平均值K=0.18cm/s,为强透水性;①层素填土地表覆土渗透系数值2.75×10-5~4.90×10-5cm/s,平均值K=3.83×10-5m/d,为弱透水性;③-1强风化片岩渗透系数值1.29×10-3~7.02×10-3cm/s,平均值K=4.24×10-3cm/s(约72Lu),为中等透水性;③-2中风化渗透系数值2.29~9.38×10-5cm/s,平均值5.44×10-5(约4.6Lu),为弱透水性。       综合调勘查结果及周边1:5000水文地质调查成果,地下水均为大气降雨补给,主要以矿渣堆素填土及坡面表层粉质粘土的孔隙潜水存在,局部受地形切割出露为下降泉径流;下部基岩裂隙水弱含水性,径流较近,因此综合地下水污染防治效果,本次主要采取对矿渣堆整形加封闭矿渣堆减少降雨入渗为主的方法治理。3 斜坡稳定性计算及支护设计       根据不稳定斜坡变形现状,及区内水文地形等特点,分别对不稳定斜坡天然、地震和暴雨工况进行计算。1号不稳定斜坡天然工况计算1号不稳定斜坡地震工况计算1号不稳定斜坡暴雨工况计算       对所有8个不稳定斜坡均进行计算后,所有斜坡均处于基本稳定到欠稳定状态,需要进行支护设计。       本次堆积矿渣高度在5m-15m,且矿渣堆主要为强风化片岩,使用加筋土挡墙工程可以有效利用矿渣,且较为经济。加筋土挡墙可以分级台阶做坡度,在面层开展防渗措施。因此本次支护方案采用加筋土挡墙设计。       考虑到加筋土墙的土工格栅的蠕变、耐久、安装等损失,最终加筋土墙采用双向聚酯(PET)的土工格栅的材料,防腐等级在2-13,它的质控出厂抗拉强度可达400kN/m。加筋土挡墙设计加筋后整体稳定性分析4 总结       本次项目主要是基于地下水污染防治防渗目的开展的边坡整形消纳支挡工程设计,主要基于前期调查,确定污染来源主要为大气降水淋滤矿渣造成的水污染,未发现有深层基岩泉水出露的条件下,开展边坡稳定性分析,在此基础上进行加筋土挡墙设计。       GEO5边坡稳定系分析模块可以一个文件分析多种工况问题,减少重复建模操作,加筋土挡墙设计模块支持多级台阶设置,对本设计方案提供了计算支撑。 查看全部
<p><strong>1 项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;某矿区地下水污染综合防治工程受甲方委托在矿区勘查工作和收集周边工程建设勘查资料的基础上,遵循地质灾害防治的基本原则,对矿区矿渣堆整形、矿渣堆及堆体两侧坡面护坡、拦渣坝、截排水沟、不稳定边坡支护、危岩清除等防治工程从安全有效性、技术可行性、经济合理性进行论证,提出具有针对性、系统性的最优综合防治工程方案。</p><p><strong>2 工程地质条件</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;针对矿区矿渣堆边坡开展调勘查,共划分8个不稳定斜坡,分别进行坡面稳定性分析评价,通过钻探取样及现场大重度试验及现场2处已经滑移边坡坡面反演综合确定不稳定斜坡物质组成成分为:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①素填土(角砾为主):分布于矿区坡面中下部,参数取值天然状态:重度=19.0kN/m3,C=6.0kPa,φ=28.00°,饱和状态:重度=19.6kN/m3,C=0.5kPa,φ=21.00°;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②素填土(碎石为主):分布于矿区坡面上部,参数取值天然状态:重度=19.2kN/m3,C=2.0kPa,φ=31.00°,饱和状态:重度=19.8kN/m3,C=1.2kPa,φ=27.00°;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;③强风化片岩:分布于矿渣堆下部,厚2-8m,天然单轴抗压强度14MPa,饱和单轴抗压强度10.4MPa;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;④中风化片岩:分布于强风化基岩下,分布于3-10m以下,天然单轴抗压强度32.62MPa,饱和单轴抗压强度16.54MPa;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;其岩土体的渗透系数通过钻孔压水试验及现场双环实验确定①层素填土地表矿渣渗透系数值0.14~0.22cm/s,平均值K=0.18cm/s,为强透水性;①层素填土地表覆土渗透系数值2.75×10-5~4.90×10-5cm/s,平均值K=3.83×10-5m/d,为弱透水性;③-1强风化片岩渗透系数值1.29×10-3~7.02×10-3cm/s,平均值K=4.24×10-3cm/s(约72Lu),为中等透水性;③-2中风化渗透系数值2.29~9.38×10-5cm/s,平均值5.44×10-5(约4.6Lu),为弱透水性。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;综合调勘查结果及周边1:5000水文地质调查成果,地下水均为大气降雨补给,主要以矿渣堆素填土及坡面表层粉质粘土的孔隙潜水存在,局部受地形切割出露为下降泉径流;下部基岩裂隙水弱含水性,径流较近,因此综合地下水污染防治效果,本次主要采取对矿渣堆整形加封闭矿渣堆减少降雨入渗为主的方法治理。</p><p><strong>3 斜坡稳定性计算及支护设计</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据不稳定斜坡变形现状,及区内水文地形等特点,分别对不稳定斜坡天然、地震和暴雨工况进行计算。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307340709472.png" alt="image.png"/></p><p style="text-align: center;">1号不稳定斜坡天然工况计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307363530498.png" alt="image.png"/></p><p style="text-align: center;">1号不稳定斜坡地震工况计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307383469712.png" alt="image.png"/></p><p style="text-align: center;">1号不稳定斜坡暴雨工况计算</p><p>&nbsp; &nbsp; &nbsp; &nbsp;对所有8个不稳定斜坡均进行计算后,所有斜坡均处于基本稳定到欠稳定状态,需要进行支护设计。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次堆积矿渣高度在5m-15m,且矿渣堆主要为强风化片岩,使用加筋土挡墙工程可以有效利用矿渣,且较为经济。加筋土挡墙可以分级台阶做坡度,在面层开展防渗措施。因此本次支护方案采用加筋土挡墙设计。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;考虑到加筋土墙的土工格栅的蠕变、耐久、安装等损失,最终加筋土墙采用双向聚酯(PET)的土工格栅的材料,防腐等级在2-13,它的质控出厂抗拉强度可达400kN/m。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307433901610.png" alt="image.png"/></p><p style="text-align: center;">加筋土挡墙设计</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307454719014.png" alt="image.png"/></p><p style="text-align: center;">加筋后整体稳定性分析</p><p><strong>4 总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次项目主要是基于地下水污染防治防渗目的开展的边坡整形消纳支挡工程设计,主要基于前期调查,确定污染来源主要为大气降水淋滤矿渣造成的水污染,未发现有深层基岩泉水出露的条件下,开展边坡稳定性分析,在此基础上进行加筋土挡墙设计。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;GEO5边坡稳定系分析模块可以一个文件分析多种工况问题,减少重复建模操作,加筋土挡墙设计模块支持多级台阶设置,对本设计方案提供了计算支撑。</p>

GEO5某滑雪小镇高陡填土边坡及抗滑桩工程设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 821 次浏览 • 2024-08-22 10:41 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、抗滑桩设计1 项目背景       某滑雪场坐落于“中国滑雪之乡”吉林省通化市,海拔约980米,依山傍水而建的16公里登山步道连接某国家森林公园景区,山体落差约568米。区域年冰雪期逾150天,平均积雪厚度可达一米左右,雪质优良,可同时容纳1000人滑雪。       本次新建滑雪场度假区滑雪小镇位于滑雪场东侧临近的山坡地段,项目整体包括7栋公寓、别墅区、造雪机房和车库等。其中C4座位于项目东南侧山坡,按项目规划,在紧邻C4座东侧需要大量填土,预计新填土及原地表填土合计高度超过15米,而边坡东侧下部临近河道边坡,填土后整体形成了一个大型的高陡边坡,是该项目边坡工程中最危险的部分。项目整体及C4座周边填土边坡情况如下图所示。项目场地周边效果图2 工程地质条件       拟建场区地貌单元为坡积地貌,地势变化较大。孔口高程最大值为454.90m,最小值为416.09m,最大高差38.81m。       勘察深度内,场区地下水属第四系潜水,初见水位埋深自然地面以下1.70~4.40m,稳定水位埋深自然地面以下1.50~4.20m,稳定水位标高为411.89~449.22m,勘察区内地形为山坡,地表水不发育,地下水补给来源主要为大气降雨和雪水融化,降水量比较充沛。山区覆盖层比较薄,有利于降水渗入补给。       由于地势较高,汇水面积小,地形坡度较大,覆盖层不厚,因此地表水径流条件良好,并在短时间内,由沟谷泄走。        地层岩性由上至下分10层,表层土为第四系素填土、粉质粘土含角砾、粗砂、圆砾、卵石,下伏基岩为:老岭群珍珠门组大理岩,根据勘察区岩体露头产状,倾向135°,倾角63°。现分层描述如下:       第①层 素填土:暗黄色、黑色,湿,松散,主要由碎石、粘性土等回填,该层在场区内分布不连续,层厚0.40~3.00m。       第②层 腐殖土:黑色,湿,松散,该层在场区部分地段见到,层厚0.30~1.90m。       第③层 粉质粘土含角砾:暗黄色,湿~饱和,可塑,角砾含量20%左右,该层在场区内部分地段缺失,层厚0.40~3.40m。       第④层 粗砂:暗黄色,湿,稍密,粒径大于0.5mm的颗粒质量超过总质量的50%以上,颗分级配好,分选性差,该层在场区内部分地段见到,层厚0.80~2.10m。       第⑤层 角砾:暗黄色,湿~饱和,稍密,粒径大于2mm的颗粒质量占总质量的50%以上,呈棱角状,一般粒径2~5mm,最大粒径10mm,由粘性土充填,该层在场区内分布不连续,层厚1.60~2.70m。       第⑥层 碎石:暗黄色,湿,稍密,粒径大于20mm的颗粒质量占总质量的50%以上,呈棱角状,一般粒径20~50mm,最大粒径70mm,由粘性土充填,该层在场区内部分地段见到,层厚0.50~3.10m。       第⑦层 卵石:暗黄色,湿~饱和,稍密,粒径大于20mm的颗粒占总质量的50%以上,呈亚圆状,一般粒径20~60mm,最大粒径120mm,由砂类土充填,该层在场区内分布不连续,层厚0.30~4.60m。       第⑧层 大理岩:全风化,灰白色,经风化作用,结构被破坏,见原岩成份,该层在场区内分布不连续,层厚0.40~0.90m。       第⑨层 大理岩:强风化,灰白色,隐晶质变晶结构,块状构造,为较软岩,较破碎,岩芯呈碎块状,岩体基本质量等级为Ⅳ级,层厚0.20~2.10m。       第⑩层 大理岩:中风化,灰白色,隐晶质变晶结构,块状构造,为较软岩,较完整,岩芯呈短柱状及块状,岩体基本质量等级为Ⅳ级,层厚5.00~20.40m。场地7-7工程地质剖面图3 支挡结构设计3.1设计参数       (1)X1-X2-X3-X4剖面:采用直径1200mm抗滑桩,间距2.4m,桩长18m, 桩端进入中风化大理岩不小于4m,兼做上部悬臂式挡土墙的桩基础,悬臂式挡土墙高3m;       (2)Y1-Y2-Y3-Y4-Y5剖面:采用直径1400mm抗滑桩,间距2.4m,桩长11m, 桩端进入中风化大理岩不小于4m,兼做上部扶壁式挡土墙的桩基础,扶壁式挡土墙高5m;       (3)支护桩及悬臂式、扶壁式挡土墙采用C30混凝土,主筋采用HRB400级钢筋,箍筋可采用HPB335级钢筋;主筋外侧混凝土保护层厚度50mm;       (4)锚索采用3-7∅5(∅=15.2)钢绞线为筋体,成孔直径不小于150mm,注浆材料为素水泥浆,水灰比0.8:1,水泥采用42.5级普通硅酸盐水泥,应按规范要求保证锚索施工质量;       (5)锚索承载力标准值Nk=150kPa,预拉力为Nk的140%,持荷5分钟后锁定,锁定力为Nk的85%;       (6)填土要求:上部填土必须分层夯实,分层厚度不大于400mm,压实系数不小于0.95,并严格按照图中尺寸进行填筑,严禁超挖超填;回填材料为砂类土或黏土混以碎石,严禁使用软黏土、膨胀性土、淤泥质土、耕植土或冻土作为回填土;       (7)上部挡墙后地面横坡坡度大于1:6时,应在进行地面粗糙后再填土;       (8)锚索及锚头的防腐处应符合《建筑边坡工程技术规范》GB50330-2013永久性锚杆的防腐蚀处理的规定。典型设计剖面3.2计算分析成果(1)天然工况计算(2)地震工况计算4 总结       本项目整体建于山体边坡上,涉及各种边坡形式较多,也采取了不同的支护手段,采用库仑GEO5岩土分析软件,可以实现多工况在一个文件当中进行计算,方便快捷,计算成果为设计提供了支撑。       项目于2021年初进行设计,并陆续施工,至2022年完工,当时正处于新冠疫情期间,未能采集到施工过程的影像,后期据业主反映建成后效果很好,且与度假区整体的景观规划较协调。 查看全部
<p>使用模块:GEO5土质边坡稳定性分析、抗滑桩设计</p><p><strong>1 项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;某滑雪场坐落于“中国滑雪之乡”吉林省通化市,海拔约980米,依山傍水而建的16公里登山步道连接某国家森林公园景区,山体落差约568米。区域年冰雪期逾150天,平均积雪厚度可达一米左右,雪质优良,可同时容纳1000人滑雪。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次新建滑雪场度假区滑雪小镇位于滑雪场东侧临近的山坡地段,项目整体包括7栋公寓、别墅区、造雪机房和车库等。其中C4座位于项目东南侧山坡,按项目规划,在紧邻C4座东侧需要大量填土,预计新填土及原地表填土合计高度超过15米,而边坡东侧下部临近河道边坡,填土后整体形成了一个大型的高陡边坡,是该项目边坡工程中最危险的部分。项目整体及C4座周边填土边坡情况如下图所示。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294173959878.png" alt="image.png"/></p><p style="text-align: center;">项目场地周边效果图</p><p><strong>2 工程地质条件</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;拟建场区地貌单元为坡积地貌,地势变化较大。孔口高程最大值为454.90m,最小值为416.09m,最大高差38.81m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;勘察深度内,场区地下水属第四系潜水,初见水位埋深自然地面以下1.70~4.40m,稳定水位埋深自然地面以下1.50~4.20m,稳定水位标高为411.89~449.22m,勘察区内地形为山坡,地表水不发育,地下水补给来源主要为大气降雨和雪水融化,降水量比较充沛。山区覆盖层比较薄,有利于降水渗入补给。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;由于地势较高,汇水面积小,地形坡度较大,覆盖层不厚,因此地表水径流条件良好,并在短时间内,由沟谷泄走。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 地层岩性由上至下分10层,表层土为第四系素填土、粉质粘土含角砾、粗砂、圆砾、卵石,下伏基岩为:老岭群珍珠门组大理岩,根据勘察区岩体露头产状,倾向135°,倾角63°。现分层描述如下:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第①层 素填土:暗黄色、黑色,湿,松散,主要由碎石、粘性土等回填,该层在场区内分布不连续,层厚0.40~3.00m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第②层 腐殖土:黑色,湿,松散,该层在场区部分地段见到,层厚0.30~1.90m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第③层 粉质粘土含角砾:暗黄色,湿~饱和,可塑,角砾含量20%左右,该层在场区内部分地段缺失,层厚0.40~3.40m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第④层 粗砂:暗黄色,湿,稍密,粒径大于0.5mm的颗粒质量超过总质量的50%以上,颗分级配好,分选性差,该层在场区内部分地段见到,层厚0.80~2.10m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑤层 角砾:暗黄色,湿~饱和,稍密,粒径大于2mm的颗粒质量占总质量的50%以上,呈棱角状,一般粒径2~5mm,最大粒径10mm,由粘性土充填,该层在场区内分布不连续,层厚1.60~2.70m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑥层 碎石:暗黄色,湿,稍密,粒径大于20mm的颗粒质量占总质量的50%以上,呈棱角状,一般粒径20~50mm,最大粒径70mm,由粘性土充填,该层在场区内部分地段见到,层厚0.50~3.10m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑦层 卵石:暗黄色,湿~饱和,稍密,粒径大于20mm的颗粒占总质量的50%以上,呈亚圆状,一般粒径20~60mm,最大粒径120mm,由砂类土充填,该层在场区内分布不连续,层厚0.30~4.60m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑧层 大理岩:全风化,灰白色,经风化作用,结构被破坏,见原岩成份,该层在场区内分布不连续,层厚0.40~0.90m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑨层 大理岩:强风化,灰白色,隐晶质变晶结构,块状构造,为较软岩,较破碎,岩芯呈碎块状,岩体基本质量等级为Ⅳ级,层厚0.20~2.10m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑩层 大理岩:中风化,灰白色,隐晶质变晶结构,块状构造,为较软岩,较完整,岩芯呈短柱状及块状,岩体基本质量等级为Ⅳ级,层厚5.00~20.40m。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294258606780.png" alt="image.png"/></p><p style="text-align: center;">场地7-7工程地质剖面图</p><p><strong>3 支挡结构设计</strong></p><p>3.1设计参数</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(1)X1-X2-X3-X4剖面:采用直径1200mm抗滑桩,间距2.4m,桩长18m, 桩端进入中风化大理岩不小于4m,兼做上部悬臂式挡土墙的桩基础,悬臂式挡土墙高3m;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(2)Y1-Y2-Y3-Y4-Y5剖面:采用直径1400mm抗滑桩,间距2.4m,桩长11m, 桩端进入中风化大理岩不小于4m,兼做上部扶壁式挡土墙的桩基础,扶壁式挡土墙高5m;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(3)支护桩及悬臂式、扶壁式挡土墙采用C30混凝土,主筋采用HRB400级钢筋,箍筋可采用HPB335级钢筋;主筋外侧混凝土保护层厚度50mm;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(4)锚索采用3-7∅5(∅=15.2)钢绞线为筋体,成孔直径不小于150mm,注浆材料为素水泥浆,水灰比0.8:1,水泥采用42.5级普通硅酸盐水泥,应按规范要求保证锚索施工质量;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(5)锚索承载力标准值Nk=150kPa,预拉力为Nk的140%,持荷5分钟后锁定,锁定力为Nk的85%;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(6)填土要求:上部填土必须分层夯实,分层厚度不大于400mm,压实系数不小于0.95,并严格按照图中尺寸进行填筑,严禁超挖超填;回填材料为砂类土或黏土混以碎石,严禁使用软黏土、膨胀性土、淤泥质土、耕植土或冻土作为回填土;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(7)上部挡墙后地面横坡坡度大于1:6时,应在进行地面粗糙后再填土;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(8)锚索及锚头的防腐处应符合《建筑边坡工程技术规范》GB50330-2013永久性锚杆的防腐蚀处理的规定。</p><p style="text-align: center;"><strong><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294336596049.png" alt="image.png"/></strong></p><p style="text-align: center;">典型设计剖面</p><p>3.2计算分析成果</p><p>(1)天然工况计算</p><p style="text-align: center;"><strong><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294366973070.png" alt="image.png"/></strong><br/></p><p style="text-align: center;"><strong><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294379804812.png" alt="image.png"/></strong></p><p>(2)地震工况计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294399993421.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294414892184.png" alt="image.png"/></p><p><strong>4 总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本项目整体建于山体边坡上,涉及各种边坡形式较多,也采取了不同的支护手段,采用库仑GEO5岩土分析软件,可以实现多工况在一个文件当中进行计算,方便快捷,计算成果为设计提供了支撑。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;项目于2021年初进行设计,并陆续施工,至2022年完工,当时正处于新冠疫情期间,未能采集到施工过程的影像,后期据业主反映建成后效果很好,且与度假区整体的景观规划较协调。</p>

GEO5某水库管理营地边坡支护结构设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 758 次浏览 • 2024-08-22 10:34 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、抗滑桩设计、扶壁式挡土墙设计、重力式挡土墙设计1 项目背景       某水库位于金沙江左岸某二级支流中上游。水库为III等中型工程,工程任务为农业灌溉,城乡供水等综合利用。水库正常蓄水位1971.0m,设计洪水位1971.02m,校核洪水位1971.48m。水库总库容5113万m3,兴利库容4446万m3。工程由水库枢纽和灌区工程两部分组成,其中:水库枢纽包括大坝(粘土心墙石渣坝)、溢洪道、放空(导流)隧洞、取水隧洞等;灌区工程包括1条干渠和4条支渠。       工程场地库坝区未来50年超越概率10%的基岩水平峰值加速度为0.121g,相应地震烈度为Ⅶ度。       根据《水利水电工程合理使用年限及耐久性设计规范》(SL654-2014)表 3.0.2确定,对综合利用的水利水电工程,工程合理使用年限应按其中最高年限确定。该水库工程等别为Ⅲ等,工程规模为中型,确定工程合理使用年限为50年。       水库配套管理营地工程区位于右岸,场地现状为斜坡地段。场地地面高程为 1993m~2017m,最大高程为 22m,自然边坡坡度为 15°~20°,局部较陡, 最大约 30°。因处于斜坡地带,需对营地周边边坡进行支护结构设计。管理营地区域位置2 工程地质条件       根据工程地质测绘及勘探揭示,场地覆盖层主要为第四系残坡积形成的(Q4el+dl) 含孤块碎石土、含碎砾石粉质黏土,下伏基岩为白垩系下统粉砂质泥岩,各岩土层地质特征自上而下描述如下:(1)第四系残坡积层(Q4el+dl)       ①1 含孤块碎石土:紫红色,主要为孤块石, 原岩为粉砂质泥岩,呈碎块-柱状,碎块大小 2-6cm,柱长 5cm-25cm,含量 60%-70%,中间夹少量粉质黏土。厚度 4.6m~6.5m。       ①2 含碎砾石粉质黏土: 褐色,稍湿~干燥,松散~稍密,可塑状,碎石呈棱角-次棱角状,大小1-5cm,含量约 20%~30%,原岩为粉砂质泥岩。厚度 1.5m~7m。(2) 白垩系下统基岩       ②粉砂质泥岩:紫红色、青灰色,湿,成分以粘土矿物为主,泥质结构,薄层~中厚层状构造。       按其风化程度的不同,粉砂质泥岩可分为以下三个亚层:       ②1 强风化粉砂质泥岩: 强卸荷,岩体强烈卸荷松弛,普遍夹泥, 裂隙发育,遇水易崩解,性软,岩芯呈散体状结构,碎块大小 3cm~30cm。 厚度 1.5m~12m。       ②2 中风化粉砂质泥岩:岩体结构部分破坏,层理较为清晰,性脆,断口不平整,岩芯呈短柱状及柱状,较完整。 厚度 3.2m ~12m。       ②3 微新风化粉砂质泥岩:岩体结构基本未变,仅节理面有少量锈染,有少量风化裂隙,岩芯呈柱状及长柱状,较完整,本次未揭穿。场地岩土体物理力学参数建议值3 边坡支挡结构设计       营地后边坡采用抗滑桩结合逆作法锚拉式重力挡墙工艺,营地前缘边坡采用扶壁式挡墙填方施工,边坡开挖施工应严格按照从上至下刷坡,严禁未刷坡擅自开挖坡脚,采用动态信息化施工方法,做好施工期监测保证施工期安全。3.1边坡安全等级       边坡、挡土墙结构设计工作年限为50年;1#抗滑桩结合挡墙支护的边坡安全等级为以及一级,结构重要性系数为1.1,2#挡墙边坡安全等级为二级,结构重要性系数为1.0,3#挡墙边坡安全等级为一级,结构重要性系数为1.1。       持久工况挡墙抗滑移稳定系数为1.3,抗倾覆稳定系数为1.6;地震工况挡墙抗滑移稳定系数为1.1,抗倾覆稳定系数为1.3。       根据《建筑边坡工程技术规范》(GB50330~2013)要求,营地后边坡安全等级取一级,一般工况边坡稳定安全系数取1.35,地震工况取1.15。营地前缘填方边坡安全等级取二级,一般工况边坡稳定安全系数取1.30,地震工况取1.10。3.2典型断面设计3.3计算分析成果(1)抗滑桩支挡边坡设计(2)重力式挡墙支护设计(3)扶壁式挡墙支挡结构设计4 总结       本项目属于斜坡场地周边边坡支护设计,根据不同位置地质条件及斜坡高度,采取了不同的支护措施。       利用南京库仑GEO5岩土分析软件,可以快速建立多种挡墙类型及抗滑桩支挡结构,便于方案对比分析,多模块可以联合使用,省去重复建模时间,提高了项目设计效率。 查看全部
<p>使用模块:GEO5土质边坡稳定性分析、抗滑桩设计、扶壁式挡土墙设计、重力式挡土墙设计</p><p><strong>1 项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;某水库位于金沙江左岸某二级支流中上游。水库为III等中型工程,工程任务为农业灌溉,城乡供水等综合利用。水库正常蓄水位1971.0m,设计洪水位1971.02m,校核洪水位1971.48m。水库总库容5113万m3,兴利库容4446万m3。工程由水库枢纽和灌区工程两部分组成,其中:水库枢纽包括大坝(粘土心墙石渣坝)、溢洪道、放空(导流)隧洞、取水隧洞等;灌区工程包括1条干渠和4条支渠。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;工程场地库坝区未来50年超越概率10%的基岩水平峰值加速度为0.121g,相应地震烈度为Ⅶ度。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据《水利水电工程合理使用年限及耐久性设计规范》(SL654-2014)表 3.0.2确定,对综合利用的水利水电工程,工程合理使用年限应按其中最高年限确定。该水库工程等别为Ⅲ等,工程规模为中型,确定工程合理使用年限为50年。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;水库配套管理营地工程区位于右岸,场地现状为斜坡地段。场地地面高程为 1993m~2017m,最大高程为 22m,自然边坡坡度为 15°~20°,局部较陡, 最大约 30°。因处于斜坡地带,需对营地周边边坡进行支护结构设计。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293414348507.png" alt="image.png"/></p><p style="text-align: center;">管理营地区域位置</p><p><strong>2 工程地质条件</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据工程地质测绘及勘探揭示,场地覆盖层主要为第四系残坡积形成的(Q<sub>4</sub><sup>el+dl</sup>) 含孤块碎石土、含碎砾石粉质黏土,下伏基岩为白垩系下统粉砂质泥岩,各岩土层地质特征自上而下描述如下:</p><p>(1)第四系残坡积层(Q<sub>4</sub><sup>el+dl</sup>)</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①<sub>1</sub> 含孤块碎石土:紫红色,主要为孤块石, 原岩为粉砂质泥岩,呈碎块-柱状,碎块大小 2-6cm,柱长 5cm-25cm,含量 60%-70%,中间夹少量粉质黏土。厚度 4.6m~6.5m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①<sub>2</sub> 含碎砾石粉质黏土: 褐色,稍湿~干燥,松散~稍密,可塑状,碎石呈棱角-次棱角状,大小1-5cm,含量约 20%~30%,原岩为粉砂质泥岩。厚度 1.5m~7m。</p><p>(2) 白垩系下统基岩</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②粉砂质泥岩:紫红色、青灰色,湿,成分以粘土矿物为主,泥质结构,薄层~中厚层状构造。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;按其风化程度的不同,粉砂质泥岩可分为以下三个亚层:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②<sub>1</sub> 强风化粉砂质泥岩: 强卸荷,岩体强烈卸荷松弛,普遍夹泥, 裂隙发育,遇水易崩解,性软,岩芯呈散体状结构,碎块大小 3cm~30cm。 厚度 1.5m~12m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②<sub>2</sub> 中风化粉砂质泥岩:岩体结构部分破坏,层理较为清晰,性脆,断口不平整,岩芯呈短柱状及柱状,较完整。 厚度 3.2m ~12m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②<sub>3</sub> 微新风化粉砂质泥岩:岩体结构基本未变,仅节理面有少量锈染,有少量风化裂隙,岩芯呈柱状及长柱状,较完整,本次未揭穿。</p><p style="text-align: center;">场地岩土体物理力学参数建议值</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293556747125.png" alt="image.png"/></p><p><strong>3 边坡支挡结构设计</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;营地后边坡采用抗滑桩结合逆作法锚拉式重力挡墙工艺,营地前缘边坡采用扶壁式挡墙填方施工,边坡开挖施工应严格按照从上至下刷坡,严禁未刷坡擅自开挖坡脚,采用动态信息化施工方法,做好施工期监测保证施工期安全。</p><p>3.1边坡安全等级</p><p>&nbsp; &nbsp; &nbsp; &nbsp;边坡、挡土墙结构设计工作年限为50年;1#抗滑桩结合挡墙支护的边坡安全等级为以及一级,结构重要性系数为1.1,2#挡墙边坡安全等级为二级,结构重要性系数为1.0,3#挡墙边坡安全等级为一级,结构重要性系数为1.1。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;持久工况挡墙抗滑移稳定系数为1.3,抗倾覆稳定系数为1.6;地震工况挡墙抗滑移稳定系数为1.1,抗倾覆稳定系数为1.3。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据《建筑边坡工程技术规范》(GB50330~2013)要求,营地后边坡安全等级取一级,一般工况边坡稳定安全系数取1.35,地震工况取1.15。营地前缘填方边坡安全等级取二级,一般工况边坡稳定安全系数取1.30,地震工况取1.10。</p><p>3.2典型断面设计</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293613580210.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293632403706.png" alt="image.png"/></p><p>3.3计算分析成果</p><p>(1)抗滑桩支挡边坡设计</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293654568646.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293672289728.png" alt="image.png"/></p><p>(2)重力式挡墙支护设计</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293692857938.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293705178783.png" alt="image.png"/></p><p>(3)扶壁式挡墙支挡结构设计</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293723622989.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293733596600.png" alt="image.png"/></p><p>4<strong> 总结</strong></p><p><strong>&nbsp; &nbsp; &nbsp; &nbsp;</strong>本项目属于斜坡场地周边边坡支护设计,根据不同位置地质条件及斜坡高度,采取了不同的支护措施。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;利用南京库仑GEO5岩土分析软件,可以快速建立多种挡墙类型及抗滑桩支挡结构,便于方案对比分析,多模块可以联合使用,省去重复建模时间,提高了项目设计效率。</p>

GEO5某省道应急抢险修复工程设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 966 次浏览 • 2024-08-22 10:13 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、微型桩设计一、项目背景       某省道K160+800~K160+845段为直线填方路基段,外侧路肩墙高3.0~4.0m高,路面标高660.58~662.84m左右,纵面较平缓,道路外侧坡体为自然状态的单斜坡地形,横坡总体较缓。       今年5月中旬因遭受连续强降雨,地表水陡增,雨水渗入填土与原生黏性土面(粉质黏土属相对隔水层),导致上部填土层含水量增大,逐渐饱水软化,抗剪强度减小,容重增加等综合作用下产生路基沉降约20cm、路面开裂形成纵向裂缝,裂缝宽约5~10cm,路肩墙向外推移变形,严重影响交通。安全隐患影响较大。该道路为境内主干道,涉及数万人员出行及各种物资运输,影响重大,综合以上因素,该段路基水毁急需抢险治理。道路现场照片二、滑坡体特征       根据本次工程地质测绘、钻探揭露及收集的已有资料,滑坡滑体物质主要由粉质粘土夹块碎石、素填土组成,厚度2.0~6.0m,黄褐色、棕褐色,块石含量不均,一般10~30%,粒径一般 0.10~0.50m,粘土呈软塑~可塑状,透水性较差。       滑带土位于土层内部,埋深3.1m;滑带土主要为粘土,黄褐色,软塑状,含约10%的角砾、碎石,角砾粒径一般5~20mm,角砾呈次棱角状,无定向排列,滑带土受挤压、搓揉明显。       滑床物质为坡洪积(Q4dl+pl)黄褐色粉质粘土,粉质粘土呈可塑~硬塑状,滑床形态纵向上呈折线型,与地表形态相近。       滑体中地下水主要为松散岩类孔隙水,其地下水主要为大气降雨补给,具就地补给就近排泄,径流距离较短的特点。因滑坡体位于斜坡地段,地下水赋存条件差,排泄条件好,勘察期间对施工钻孔进行的水文地质观测及抽水试验成果,滑坡路段地下水较贫乏。滑带土取芯照片       该段上部为原道路修建时堆积填土,厚度约1~5.5m,下部为可塑~硬塑状粉质黏土,黄褐色,含少量碎石角砾,厚度约2.0~30.0m,下伏基岩为二叠系中统龙潭、大隆并组的页岩、灰岩,岩体较破碎,附近较远处基岩测得实际产状,倾向为328°,倾角12°;斜坡主要为填土、粉质黏土,以荒地、林地相间,局部旱地。植被总体较发育。近10年岸坡总体较稳定,未有大范围岸坡滑移现象,以局部下沉变形迹象为主。三、滑坡稳定性分析(1)定性分析       滑坡的形成,是由其地形地貌、地层岩性、水及人类工程活动的共同作用的结果:厚度较大的第四系坡洪积土的存在,为滑坡的形成提供了物质基础。据已有钻探资料揭示,在滑坡区域内,坡洪积土厚一般4.0~30.0m,为滑坡层产生不同程度的变形;水的作用,是滑坡形成的激发因素,区域内降雨量大并集中,多为大、暴雨,雨水的下渗,不但降低土体的抗剪强度,还提高滑体重量,产生动水压力等,为滑坡产生变形提了有利条件。       滑坡所的形成提供丰富的物质来源;软弱结构面的存在为滑坡的形成提供了良好的地质环境,便于形成滑动面,由于土体本身强度的降低,形成软弱结构面,这样接触面倾角适宜的条件下,使土体产生足够的下滑分力;滑坡体位处斜坡地段,地面坡角与滑面坡度基本一致,坡度角一般为10~22°,地形坡度条件为滑坡形成与位移提供了临空面,大气降水对滑体进行冲刷、侵蚀、饱和软化,使滑坡堆积处位置地形坡角较大,滑坡临空条件较好,为滑坡的形成及发生创造了有利的工程地质条件。汛期雨水较多,滑坡持续受大雨、暴雨影响,造成滑体物质力学性质降低,导致坡体中前部局部出现滑移、外挤迹象。若遇暴雨或持续降雨影响,该滑坡有可能在坡体中部、后部出现滑移破坏,并且有可能进一步加剧变形,发展为滑体发生整体下滑。目前该滑坡处于欠稳定状态。(2)滑动面参数确定       滑坡滑面参数的综合确定:综合考虑滑坡体性质(成分及覆盖层厚度)、滑面的工程物理特性、同类工程经验类比、反演分析成果及相关规范,确定本滑坡滑动面的抗剪设计参数为:C=14.2kPa(12.5 kPa),Φ=9.0°(8.5°)。滑坡设计计算参数见下表:(3)定量计算       本次稳定性计算采用GEO5软件。工况分为工况一、自重(天然状态),工况二、自重+暴雨(饱和状态)。安全系数根据《公路路基设计规范》(JGT D30-2015)第7.2.2条第1款有关规定,计算时安全系数分别为:       工况一、自重(天然状态)下,安全系数取1.25;       工况二、自重+暴雨(饱和状态)下,安全系数取1.15。       稳定性计算考虑2种工况:一、自重+天然状态;二、自重+饱水状态;对现有滑坡稳定性进行计算,计算方法采用折线法(不平衡推力法隐式),结算结果汇总如下:四、滑坡治理设计       在本设计中,首先对治理方案的技术合理性、施工的可行性和经济三个方面综合考虑。同时,着重考虑施工安全、工期的因素,从而选择最快捷的治理方案。结合本道路的特殊性及实际情况,对该滑坡进行综合治理。尽早完成道路施工为基本,其次为持久型治理设计,其目的在于确保以后该道路在长期运行的安全,同时消除滑坡对道路的安全隐患。两部分相辅相成,共同作用达到缩短工期、节约成本的目的。       综合考虑现场地形、地质及环境条件,其设计治理方案为:对既有滑坡体采用道路中线附近钢管桩注浆加固+外侧钢管桩地梁+挡墙恢复路基+道路中线内侧钻孔注浆加固+仰斜式排水孔+综合截排水措施,其它为路面恢复、综合交安。       本次设计方案验算是基于勘察成果所提供的岩土参数进行支挡后的稳定性计算,计算考虑2种工况:一、支挡+自重+天然状态;二、支挡+自重+饱水状态,计算方法采用折线法(不平衡推力法隐式),结算结果汇总如下:五、总结       本项目属于道路应急抢险修复工程。现场发现异常情况后,通过勘察了解场地地质构造及滑带土性质,从定性和定量角度分析了道路边坡的稳定性,从应急抢险角度出发,制定了钢管桩加挡墙的联合支挡形式。       本项目利用GEO5软件进行分析和验算,在场地评价和支护结构设计方面都起到了技术支撑作用,为设计方案提供了依据,最终方案已指导现场顺利施工。现场施工照片 查看全部
<p>使用模块:GEO5土质边坡稳定性分析、微型桩设计</p><p><strong>一、项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;某省道K160+800~K160+845段为直线填方路基段,外侧路肩墙高3.0~4.0m高,路面标高660.58~662.84m左右,纵面较平缓,道路外侧坡体为自然状态的单斜坡地形,横坡总体较缓。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;今年5月中旬因遭受连续强降雨,地表水陡增,雨水渗入填土与原生黏性土面(粉质黏土属相对隔水层),导致上部填土层含水量增大,逐渐饱水软化,抗剪强度减小,容重增加等综合作用下产生路基沉降约20cm、路面开裂形成纵向裂缝,裂缝宽约5~10cm,路肩墙向外推移变形,严重影响交通。安全隐患影响较大。该道路为境内主干道,涉及数万人员出行及各种物资运输,影响重大,综合以上因素,该段路基水毁急需抢险治理。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292423186125.png" alt="image.png"/></p><p style="text-align: center;">道路现场照片</p><p><strong>二、滑坡体特征</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据本次工程地质测绘、钻探揭露及收集的已有资料,滑坡滑体物质主要由粉质粘土夹块碎石、素填土组成,厚度2.0~6.0m,黄褐色、棕褐色,块石含量不均,一般10~30%,粒径一般 0.10~0.50m,粘土呈软塑~可塑状,透水性较差。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑带土位于土层内部,埋深3.1m;滑带土主要为粘土,黄褐色,软塑状,含约10%的角砾、碎石,角砾粒径一般5~20mm,角砾呈次棱角状,无定向排列,滑带土受挤压、搓揉明显。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑床物质为坡洪积(Q<sub>4</sub><sup>dl+pl</sup>)黄褐色粉质粘土,粉质粘土呈可塑~硬塑状,滑床形态纵向上呈折线型,与地表形态相近。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑体中地下水主要为松散岩类孔隙水,其地下水主要为大气降雨补给,具就地补给就近排泄,径流距离较短的特点。因滑坡体位于斜坡地段,地下水赋存条件差,排泄条件好,勘察期间对施工钻孔进行的水文地质观测及抽水试验成果,滑坡路段地下水较贫乏。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292469304981.png" alt="image.png"/></p><p style="text-align: center;">滑带土取芯照片</p><p>&nbsp; &nbsp; &nbsp; &nbsp;该段上部为原道路修建时堆积填土,厚度约1~5.5m,下部为可塑~硬塑状粉质黏土,黄褐色,含少量碎石角砾,厚度约2.0~30.0m,下伏基岩为二叠系中统龙潭、大隆并组的页岩、灰岩,岩体较破碎,附近较远处基岩测得实际产状,倾向为328°,倾角12°;斜坡主要为填土、粉质黏土,以荒地、林地相间,局部旱地。植被总体较发育。近10年岸坡总体较稳定,未有大范围岸坡滑移现象,以局部下沉变形迹象为主。</p><p><strong>三、滑坡稳定性分析</strong></p><p><strong>(1)定性分析</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑坡的形成,是由其地形地貌、地层岩性、水及人类工程活动的共同作用的结果:厚度较大的第四系坡洪积土的存在,为滑坡的形成提供了物质基础。据已有钻探资料揭示,在滑坡区域内,坡洪积土厚一般4.0~30.0m,为滑坡层产生不同程度的变形;水的作用,是滑坡形成的激发因素,区域内降雨量大并集中,多为大、暴雨,雨水的下渗,不但降低土体的抗剪强度,还提高滑体重量,产生动水压力等,为滑坡产生变形提了有利条件。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑坡所的形成提供丰富的物质来源;软弱结构面的存在为滑坡的形成提供了良好的地质环境,便于形成滑动面,由于土体本身强度的降低,形成软弱结构面,这样接触面倾角适宜的条件下,使土体产生足够的下滑分力;滑坡体位处斜坡地段,地面坡角与滑面坡度基本一致,坡度角一般为10~22°,地形坡度条件为滑坡形成与位移提供了临空面,大气降水对滑体进行冲刷、侵蚀、饱和软化,使滑坡堆积处位置地形坡角较大,滑坡临空条件较好,为滑坡的形成及发生创造了有利的工程地质条件。汛期雨水较多,滑坡持续受大雨、暴雨影响,造成滑体物质力学性质降低,导致坡体中前部局部出现滑移、外挤迹象。若遇暴雨或持续降雨影响,该滑坡有可能在坡体中部、后部出现滑移破坏,并且有可能进一步加剧变形,发展为滑体发生整体下滑。目前该滑坡处于欠稳定状态。</p><p><strong>(2)滑动面参数确定</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑坡滑面参数的综合确定:综合考虑滑坡体性质(成分及覆盖层厚度)、滑面的工程物理特性、同类工程经验类比、反演分析成果及相关规范,确定本滑坡滑动面的抗剪设计参数为:C=14.2kPa(12.5 kPa),Φ=9.0°(8.5°)。</p><p>滑坡设计计算参数见下表:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292524569019.png" alt="image.png"/></p><p><strong>(3)定量计算</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次稳定性计算采用GEO5软件。工况分为工况一、自重(天然状态),工况二、自重+暴雨(饱和状态)。安全系数根据《公路路基设计规范》(JGT D30-2015)第7.2.2条第1款有关规定,计算时安全系数分别为:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;工况一、自重(天然状态)下,安全系数取1.25;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;工况二、自重+暴雨(饱和状态)下,安全系数取1.15。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;稳定性计算考虑2种工况:一、自重+天然状态;二、自重+饱水状态;对现有滑坡稳定性进行计算,计算方法采用折线法(不平衡推力法隐式),结算结果汇总如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292571359212.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292593417922.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292606879846.png" alt="image.png"/></p><p><strong>四、滑坡治理设计</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;在本设计中,首先对治理方案的技术合理性、施工的可行性和经济三个方面综合考虑。同时,着重考虑施工安全、工期的因素,从而选择最快捷的治理方案。结合本道路的特殊性及实际情况,对该滑坡进行综合治理。尽早完成道路施工为基本,其次为持久型治理设计,其目的在于确保以后该道路在长期运行的安全,同时消除滑坡对道路的安全隐患。两部分相辅相成,共同作用达到缩短工期、节约成本的目的。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;综合考虑现场地形、地质及环境条件,其设计治理方案为:对既有滑坡体采用道路中线附近钢管桩注浆加固+外侧钢管桩地梁+挡墙恢复路基+道路中线内侧钻孔注浆加固+仰斜式排水孔+综合截排水措施,其它为路面恢复、综合交安。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次设计方案验算是基于勘察成果所提供的岩土参数进行支挡后的稳定性计算,计算考虑2种工况:一、支挡+自重+天然状态;二、支挡+自重+饱水状态,计算方法采用折线法(不平衡推力法隐式),结算结果汇总如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292640257868.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292653711604.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292693961253.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292706726594.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292722894560.png" alt="image.png"/></p><p><strong>五、总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本项目属于道路应急抢险修复工程。现场发现异常情况后,通过勘察了解场地地质构造及滑带土性质,从定性和定量角度分析了道路边坡的稳定性,从应急抢险角度出发,制定了钢管桩加挡墙的联合支挡形式。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本项目利用GEO5软件进行分析和验算,在场地评价和支护结构设计方面都起到了技术支撑作用,为设计方案提供了依据,最终方案已指导现场顺利施工。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292745367036.png" alt="image.png"/></p><p style="text-align: center;">现场施工照片</p>

基于静力平衡法的带拉杆板桩嵌固深度及内力的手算与GEO5电算对比

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 836 次浏览 • 2024-08-21 17:46 • 来自相关话题

       按照《建筑边坡工程技术规范》(GB50330-2013)附录F的规定,对板肋式及桩锚式挡墙,当立柱嵌入深度较小时,视立柱下端为自由端,可以采用静力平衡法计算,当立柱嵌入深度较大时,视立柱下端为固定端,按等值梁法计算。       在GEO5软件当中,采用深基坑支护结构设计模块,根据底部固支或铰支情况可以分别模拟支锚式支挡结构的等值梁法和静力平衡法分析。这里选取某典型案例,进行静力平衡法手算和软件计算的对比分析。1、案例介绍       一个下端自由支撑,上部有锚定拉杆的板桩挡土墙,如下图所示,周围土重度γ=19kN/m³,φ=30°,粘聚力c=0,锚定拉杆距地面1m,水平间距a=2.5m,基坑开挖深度为h=8m,请采用静力平衡法计算桩墙的入土深度和桩身内力。2、手算过程(1)土压力计算主动土压力:被动土压力:(2)外力对支撑点取矩       其中被动土压力折减系数取K=2,将d=1、h=8以及Ea和Ep的式子代入上式,解得三次方程:求解后得到桩的入土深度为。水平支撑的作用力:桩身最大弯矩处即是剪力为0点,设该点到地面的距离为h0。 最大弯矩3、GEO5建模计算       打开深基坑支护结构设计模块,输入土层材料参数,设置基坑开挖深度和锚杆位置及间距。       岩土作用力选择主动土压力,分布形式选择最左侧常规的三角形分布。       点击分析,结构底端支座类型选择铰支,被动土压力折减系数输入0.5,自动得到嵌固深度t=5.52m,水平支撑作用力为361.36kN,单位宽度弯矩最大值为505.97kNm。4、对比分析       将手算和GEO5计算得到的几个关键指标进行对比,做误差分析,可以得到如下结果:针对嵌固深度,两者计算基本一致,对于水平支撑作用力和最大弯矩值,两者计算误差在1%左右。       相比手算过程,使用GEO5分析计算更加快捷直观,同时还支持添加更为复杂的外部环境,比如超载,地下水作用等。 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp;按照《建筑边坡工程技术规范》(GB50330-2013)附录F的规定,对板肋式及桩锚式挡墙,当立柱嵌入深度较小时,视立柱下端为自由端,可以采用静力平衡法计算,当立柱嵌入深度较大时,视立柱下端为固定端,按等值梁法计算。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;在GEO5软件当中,采用深基坑支护结构设计模块,根据底部固支或铰支情况可以分别模拟支锚式支挡结构的等值梁法和静力平衡法分析。这里选取某典型案例,进行静力平衡法手算和软件计算的对比分析。</p><p>1、案例介绍</p><p>&nbsp; &nbsp; &nbsp; &nbsp;一个下端自由支撑,上部有锚定拉杆的板桩挡土墙,如下图所示,周围土重度γ=19kN/m³,φ=30°,粘聚力c=0,锚定拉杆距地面1m,水平间距a=2.5m,基坑开挖深度为h=8m,请采用静力平衡法计算桩墙的入土深度和桩身内力。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724232116248430.png" alt="image.png" width="307" height="285" style="width: 307px; height: 285px;"/></p><p>2、手算过程</p><p>(1)土压力计算</p><p>主动土压力:</p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724232158781591.png" alt="image.png" width="468" height="38" style="width: 468px; height: 38px;"/></p><p>被动土压力:</p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724232192933052.png" alt="image.png" width="398" height="40" style="width: 398px; height: 40px;"/><img class="loadingclass" id="loading_m03ncbqp" src="https://wen.kulunsoft.com/stat ... ot%3B title="正在上传..."/></p><p>(2)外力对支撑点取矩</p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724232219873124.png" alt="image.png" width="289" height="37" style="width: 289px; height: 37px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;其中被动土压力折减系数取K=2,将d=1、h=8以及Ea和Ep的式子代入上式,解得三次方程:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724232250131985.png" alt="image.png" width="217" height="47" style="width: 217px; height: 47px;"/></p><p>求解后得到桩的入土深度为<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724232289971787.png" alt="image.png" width="68" height="20" style="width: 68px; height: 20px;"/>。</p><p>水平支撑的作用力:</p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724232311593173.png" alt="image.png" width="504" height="38" style="width: 504px; height: 38px;"/></p><p>桩身最大弯矩处即是剪力为0点,设该点到地面的距离为h<sub>0</sub>。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724232332624024.png" alt="image.png" width="105" height="36" style="width: 105px; height: 36px;"/>&nbsp;</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724233416451952.png" alt="image.png" width="338" height="55" style="width: 338px; height: 55px;"/></p><p>最大弯矩<br/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724233474475788.png" alt="image.png" width="465" height="100" style="width: 465px; height: 100px;"/></p><p>3、GEO5建模计算</p><p>&nbsp; &nbsp; &nbsp; &nbsp;打开深基坑支护结构设计模块,输入土层材料参数,设置基坑开挖深度和锚杆位置及间距。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724233505633806.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;岩土作用力选择主动土压力,分布形式选择最左侧常规的三角形分布。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724233527966874.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;点击分析,结构底端支座类型选择铰支,被动土压力折减系数输入0.5,自动得到嵌固深度t=5.52m,水平支撑作用力为361.36kN,单位宽度弯矩最大值为505.97kNm。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724233554112021.png" alt="image.png"/></p><p>4、对比分析</p><p>&nbsp; &nbsp; &nbsp; &nbsp;将手算和GEO5计算得到的几个关键指标进行对比,做误差分析,可以得到如下结果:针对嵌固深度,两者计算基本一致,对于水平支撑作用力和最大弯矩值,两者计算误差在1%左右。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;相比手算过程,使用GEO5分析计算更加快捷直观,同时还支持添加更为复杂的外部环境,比如超载,地下水作用等。</p>

地震动水压力的计算及在GEO5中的使用

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 1129 次浏览 • 2024-08-21 17:16 • 来自相关话题

       在对支挡结构进行地震工况的分析时,不仅要考虑地震对结构自身的影响以及地震土压力的影响,如果环境中有地下水或地表水,还需要考虑地震动水压力的影响。本文参考国内各行业规范及国际通用方法,对地震动水压力的计算及在GEO5软件中的使用进行说明。1. 国际通用方法       根据物部-冈部(Mononobe-Okabe)或者 Arango提出的方法,地震动水压力呈抛物线分布,简化为梯形分布后,作用在结构后面的动水压力合力可以表示为:其中: γw-水的容重kh-水平地震加速度系数H-结构的高度合力作用点位置距离墙踵的距离为0.4H。2. 国内规范方法       国内地震动水压力的计算根据不同行业规范略有差异,但总体上与国际通用方法相匹配。以下分别论述。2.1 《水工建筑物抗震设计标准》(GB51247-2018)(1)拟静力法       根据规范7.1.12节的论述,当采用拟静力法计算重力坝地震作用效应时,水深h处的地震动水压力可表示为:其中:Pw(h)--   作用在直立迎水坝面水深h处的地震动水压力代表值-- 水平向设计地震加速度代表值 --  地震作用的效应折减系数,动力法计算地震作用效应时取为1.00;拟静力法计算地震作用效应时取为0.25--   水深h处的地震动水压力分布系数,应按表7.1.12的规定取值--   水体质量密度标准值H0--  水深       那么单位宽度坝面的总地震动水压力可以表示为合力作用点在水下0.54H0处。       这个合力的计算实际上是将表格7.1.12的分布系数在总深度或总墙高范围内进行积分计算的结果,类似如下分析,感兴趣的工程师可以自行作图计算。(2)动力法       根据规范7.1.14的论述,采用动力法时,水深h处的水平向地震动水压力按下式计算       规范中没有提总的动水压力,但将上式在总深度H0范围内积分得到       可以看出采用动力法计算得到的总动水压力跟国际通用方法是一致的。       此外,规范《水电工程水工建筑物抗震设计规范》(NB35047-2015)跟上述国标要求一致。2.2 《水运工程抗震设计规范》(JTS146-2012)       根据规范5.4节的论述,作用在直墙式建筑物上的地震动水压力强度、总动水压力可以分别按下式计算:其中C为综合影响系数,取0.25,η取1。        跟水工建筑物抗震设计标准中的动力法对比,可以发现水运行业的计算公式除了多了一个综合影响系数,其他都一致。相当于采用水运公式计算,将动水压力进行了折减。2.3 其他规范       在《铁路工程抗震设计规范》(50111-2006(2009年版))以及《公路工程抗震设计规范》中,对地震动水压力也有论述,但只针对桥梁工程,并不适用于常规岩土支挡结构设计,此处不再引用。3. GEO5中的使用       在分析设置中,用户可以指定地震荷载分析时采用的规范,对于地震动水压力计算,当选择Mononobe-Okabe、 Arango以及NCMA-SRW美标规范时,动水压力都按本文第一节提到的国际通用方法计算,当选择国内水运规范计算时,软件按照2.2节水运规范的公式计算,当选择水电规范时,软件按照水2.1节中拟静力法的公式计算。选择其他行业规范时,默认参考2.1节水电行业动力法的公式计算。       另外,在GEO5软件当中,还需要注意两点:①当墙前有地下水时,软件将计算地震影响下作用在挡墙前面的动水压力;②当墙后土体渗透性较低时,如果不考虑动水压力的影响,此时在地震荷载界面中的地震动水压力中选择承压水(土体渗透性差),反之选择自由水(土体渗透性好)。 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp;在对支挡结构进行地震工况的分析时,不仅要考虑地震对结构自身的影响以及地震土压力的影响,如果环境中有地下水或地表水,还需要考虑地震动水压力的影响。本文参考国内各行业规范及国际通用方法,对地震动水压力的计算及在GEO5软件中的使用进行说明。</p><p>1. <strong>国际通用方法</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据物部-冈部(Mononobe-Okabe)或者 Arango提出的方法,地震动水压力呈抛物线分布,简化为梯形分布后,作用在结构后面的动水压力合力可以表示为:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230932920183.png" alt="image.png" width="154" height="42" style="width: 154px; height: 42px;"/></p><p>其中:&nbsp;</p><table><tbody><tr class="firstRow"><td><p><em>γ</em><sub><em>w</em></sub></p></td><td><p>-</p></td><td><p>水的容重</p></td></tr><tr><td><p><em>k</em><sub><em>h</em></sub></p></td><td><p>-</p></td><td><p>水平地震加速度系数</p></td></tr><tr><td><p><em>H</em></p></td><td><p>-</p></td><td><p>结构的高度</p></td></tr></tbody></table><p>合力作用点位置距离墙踵的距离为0.4H。</p><p>2. <strong>国内规范方法</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;国内地震动水压力的计算根据不同行业规范略有差异,但总体上与国际通用方法相匹配。以下分别论述。</p><p>2.1 《水工建筑物抗震设计标准》(GB51247-2018)</p><p>(1)拟静力法</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据规范7.1.12节的论述,当采用拟静力法计算重力坝地震作用效应时,水深h处的地震动水压力可表示为:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231011586016.png" alt="image.png" width="196" height="26" style="width: 196px; height: 26px;"/></p><p>其中:</p><p>Pw(h)--&nbsp;&nbsp; 作用在直立迎水坝面水深h处的地震动水压力代表值</p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231049887572.png" alt="image.png" width="24" height="22" style="width: 24px; height: 22px;"/>-- 水平向设计地震加速度代表值</p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231077942516.png" alt="image.png" width="19" height="23" style="width: 19px; height: 23px;"/>&nbsp;--&nbsp; 地震作用的效应折减系数,动力法计算地震作用效应时取为1.00;拟静力法计算地震作用效应时取为0.25</p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231102337513.png" alt="image.png" width="37" height="22" style="width: 37px; height: 22px;"/>--&nbsp; &nbsp;水深h处的地震动水压力分布系数,应按表7.1.12的规定取值</p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231130339629.png" alt="image.png" width="25" height="22" style="width: 25px; height: 22px;"/>--&nbsp; &nbsp;水体质量密度标准值</p><p>H<sub>0</sub>--&nbsp; 水深</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231169152494.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;那么单位宽度坝面的总地震动水压力可以表示为</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231186251269.png" alt="image.png" width="179" height="32" style="width: 179px; height: 32px;"/></p><p>合力作用点在水下0.54H<sub>0</sub>处。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;这个合力的计算实际上是将表格7.1.12的分布系数在总深度或总墙高范围内进行积分计算的结果,类似如下分析,感兴趣的工程师可以自行作图计算。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231216629148.png" alt="image.png"/></p><p>(2)动力法</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据规范7.1.14的论述,采用动力法时,水深h处的水平向地震动水压力按下式计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231234127809.png" alt="image.png" width="162" height="38" style="width: 162px; height: 38px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;规范中没有提总的动水压力,但将上式在总深度H<sub>0</sub>范围内积分得到</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231263452910.png" alt="image.png" width="195" height="41" style="width: 195px; height: 41px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;可以看出采用动力法计算得到的总动水压力跟国际通用方法是一致的。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;此外,规范《水电工程水工建筑物抗震设计规范》(NB35047-2015)跟上述国标要求一致。</p><p>2.2 《水运工程抗震设计规范》(JTS146-2012)</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据规范5.4节的论述,作用在直墙式建筑物上的地震动水压力强度、总动水压力可以分别按下式计算:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231314422915.png" alt="image.png" width="1" height="1" style="width: 1px; height: 1px;"/><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231327308195.png" alt="image.png" width="1" height="1" style="width: 1px; height: 1px;"/><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231803287082.png" alt="image.png" width="173" height="94" style="width: 173px; height: 94px;"/></p><p>其中C为综合影响系数,取0.25,η取1。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 跟水工建筑物抗震设计标准中的动力法对比,可以发现水运行业的计算公式除了多了一个综合影响系数,其他都一致。相当于采用水运公式计算,将动水压力进行了折减。</p><p>2.3 其他规范</p><p>&nbsp; &nbsp; &nbsp; &nbsp;在《铁路工程抗震设计规范》(50111-2006(2009年版))以及《公路工程抗震设计规范》中,对地震动水压力也有论述,但只针对桥梁工程,并不适用于常规岩土支挡结构设计,此处不再引用。</p><p>3. <strong>GEO5</strong><strong>中的使用</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;在分析设置中,用户可以指定地震荷载分析时采用的规范,对于地震动水压力计算,当选择Mononobe-Okabe、 Arango以及NCMA-SRW美标规范时,动水压力都按本文第一节提到的国际通用方法计算,当选择国内水运规范计算时,软件按照2.2节水运规范的公式计算,当选择水电规范时,软件按照水2.1节中拟静力法的公式计算。选择其他行业规范时,默认参考2.1节水电行业动力法的公式计算。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231857222602.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;另外,在GEO5软件当中,还需要注意两点:</p><p>①当墙前有地下水时,软件将计算地震影响下作用在挡墙前面的动水压力;</p><p>②当墙后土体渗透性较低时,如果不考虑动水压力的影响,此时在地震荷载界面中的地震动水压力中选择承压水(土体渗透性差),反之选择自由水(土体渗透性好)。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231885312559.png" alt="image.png"/></p>

GEO5自定义柱状图出图方法——以水文地质钻孔为例

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 819 次浏览 • 2024-08-21 17:00 • 来自相关话题

       GEO5 2024版丰富了三维地质建模模块的自定义数据结构功能,以柱状图为例,用户可自行配置表头数据内容,自定义列的数据类型和绘图样式,本文以某水文地质钻孔为例,说明在GEO5中如何自定义柱状图出图。某水文地质钻孔1 编辑模版1.1 创建新的模板       打开三维地质建模模块,在右侧【模式】选项框中选择【模板】选项,可以看到界面模版默认为“中国-标准”,点击【复制并编辑当前模版并添加到模版管理器】,此处自定义模版命名为“水文钻孔模版”。       将模版保存后再打开,选中编号2的水井,点击【编辑】,弹出如下图所示窗口。1.2 自定义用户数据       上图左侧即为软件自带水井模版的数据内容和类型,结合本文要定义的水文地质钻孔样式,不需要自带的地下水位、外套管、井口和井底、数据-规程选项等内容,选中相关字段,点击右侧的【删除】选项。另外,还需要增加“岩芯采取率”、“电测深曲线”两个字段和表头的相关钻孔信息,点击【添加】,输入方法选择【创建新的本地数据字段】。       点击【下一个】,弹出窗口中,类型选择【表格】,表格类型选择【带深度】,名称命名为“岩芯采取率”,点击右侧【添加】选项,增加表格列,输入方法仍选择【创建新的本地数据字段】,类型选择【数字】,名称输入“岩芯采取率”,小数位数均设置为0。点击【确定】,最后点击【添加】即完成“岩芯采取率”数据字段的添加,“电测深曲线”字段类似,这里不再赘述。       针对表头的钻孔信息,我们可以单独定义一个【组】,把表头相关的所有信息都放到里面,数据类型可以都选择字符串形式。1.3 自定义出图样式       定义好数据字段后,接下来对出图样式进行编辑。删掉原有的柱状图出图样式,点击【添加】。       我们先定义表头菜单,表头的编辑和操作方法和EXCEL表格非常类似。用户可以自定义行、列及其他维度的信息,可以合并和拆分单元格,自定义框架和背景颜色等。       根据需要,表头总共3行8列。局部区域合并单元格后,效果如下图所示。      表格里的数据字段可以直接选择之前定义好的内容,以“钻孔类型”为例,选中A1单元格,点击【插入字段】,选择【试验数据—名称】里的“钻孔信息——钻孔类型”,点击【确定】即可。该窗口中还可以调整文字颜色、样式、大小等格式。在B1单元格中,选择【试验数据—数据】,用于存储钻孔类型的实际值。       其他表头内容定义方式一样,定义完成后,得到表头样式如下,由于这是定义的模板,数据栏还没有录入数据,所以显示“Lorem ipsum”的空字符。       接下来,定义列。点击面板最右侧【添加】,将新增的表格类型改为“列”,按照水文钻孔柱状图样例,需要显示7列数据,包括“地层时代”、“厚度”、“地层柱状”、“岩性描述”、“岩芯采取率”、“电测深曲线”和“成井结构”,因绘图需要,将“地层柱状”和“岩芯采取率”按2列输入,“成井结构”按3列输入,总共需要输入11列。       这里以第一列“地层时代”为例,列名称直接输入“地层时代”,列内容中,列类型选择【钻孔柱状图】,图案选择【地层/岩土材料图例】,插入字段选择【表格属性-数据】中的【地层描述】,即后续地层时代在地层描述中输入即可。       其他列类似操作,需要注意的是,当需要选择深度坐标轴时,比如“地层柱状”和“岩芯采取率”左侧均有深度坐标,列的名称可以留空,列内容直接在类型中选择【深度坐标轴】。       当输入列内容为“岩芯采取率”和“电测深曲线”时,列类型注意选择【深度图标】,在【添加系列】时选择相应的内容。       当列定义完成后,如下图所示。       根据表格样式,调整每列的相对宽度,得到更美观的表格样式。       自此,整个出图样式就定义完成,将出图规程的名称定义为“水文钻孔”,规程类别选择【柱状剖面】。2 录入数据       在【勘察数据】中录入水文钻孔的数据信息,点击【添加】,选择【水井】,在弹出的窗口中录入相关信息,可以看到自定义的钻孔信息、岩芯采取率和电测深曲线都在目录内。2.1 录入基础信息       录入钻孔信息,直接输入文字或者数字。       录入地层信息,输入不同深度的的岩土材料,选择相应的颜色和花纹,地层描述中备注地质年代。       录入成井结构的花纹样式,可以在图例中选择类似的样式,也可以用纯色的形式模拟。2.2 录入深度数据       对于岩芯采取率和电测深曲线,需要录入随深度的变化数据,这里可以导入excel数据或者进行单个录入。3 出图效果       录入完数据后,保存信息,到【柱状剖面】界面中,选中该钻孔,选择【打印日志】,即可得到柱状图。       柱状图效果如下,对于填充效果、文字大小和线性属性还可以在模板中人为调整。       图件可以保存为PDF或者word格式,其他的钻孔录入数据后,就可以用已经定义好的模版进行批量的出图。 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp;GEO5 2024版丰富了三维地质建模模块的自定义数据结构功能,以柱状图为例,用户可自行配置表头数据内容,自定义列的数据类型和绘图样式,本文以某水文地质钻孔为例,说明在GEO5中如何自定义柱状图出图。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230227306217.png" alt="image.png"/></p><p style="text-align: center;">某水文地质钻孔</p><p>1 编辑模版</p><p>1.1 创建新的模板</p><p>&nbsp; &nbsp; &nbsp; &nbsp;打开三维地质建模模块,在右侧【模式】选项框中选择【模板】选项,可以看到界面模版默认为“中国-标准”,点击【复制并编辑当前模版并添加到模版管理器】,此处自定义模版命名为“水文钻孔模版”。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230267994677.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;将模版保存后再打开,选中编号2的水井,点击【编辑】,弹出如下图所示窗口。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230288260945.png" alt="image.png"/></p><p>1.2 自定义用户数据</p><p>&nbsp; &nbsp; &nbsp; &nbsp;上图左侧即为软件自带水井模版的数据内容和类型,结合本文要定义的水文地质钻孔样式,不需要自带的地下水位、外套管、井口和井底、数据-规程选项等内容,选中相关字段,点击右侧的【删除】选项。另外,还需要增加“岩芯采取率”、“电测深曲线”两个字段和表头的相关钻孔信息,点击【添加】,输入方法选择【创建新的本地数据字段】。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230311820227.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;点击【下一个】,弹出窗口中,类型选择【表格】,表格类型选择【带深度】,名称命名为“岩芯采取率”,点击右侧【添加】选项,增加表格列,输入方法仍选择【创建新的本地数据字段】,类型选择【数字】,名称输入“岩芯采取率”,小数位数均设置为0。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230337334598.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230353884912.png" alt="image.png"/></p><p>点击【确定】,最后点击【添加】即完成“岩芯采取率”数据字段的添加,“电测深曲线”字段类似,这里不再赘述。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;针对表头的钻孔信息,我们可以单独定义一个【组】,把表头相关的所有信息都放到里面,数据类型可以都选择字符串形式。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230373868659.png" alt="image.png"/></p><p>1.3 自定义出图样式</p><p>&nbsp; &nbsp; &nbsp; &nbsp;定义好数据字段后,接下来对出图样式进行编辑。删掉原有的柱状图出图样式,点击【添加】。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230395468427.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;我们先定义表头菜单,表头的编辑和操作方法和EXCEL表格非常类似。用户可以自定义行、列及其他维度的信息,可以合并和拆分单元格,自定义框架和背景颜色等。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230412211274.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据需要,表头总共3行8列。局部区域合并单元格后,效果如下图所示。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230434679208.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; 表格里的数据字段可以直接选择之前定义好的内容,以“钻孔类型”为例,选中A1单元格,点击【插入字段】,选择【试验数据—名称】里的“钻孔信息——钻孔类型”,点击【确定】即可。该窗口中还可以调整文字颜色、样式、大小等格式。在B1单元格中,选择【试验数据—数据】,用于存储钻孔类型的实际值。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230455941172.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;其他表头内容定义方式一样,定义完成后,得到表头样式如下,由于这是定义的模板,数据栏还没有录入数据,所以显示“Lorem ipsum”的空字符。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230476749198.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;接下来,定义列。点击面板最右侧【添加】,将新增的表格类型改为“列”,按照水文钻孔柱状图样例,需要显示7列数据,包括“地层时代”、“厚度”、“地层柱状”、“岩性描述”、“岩芯采取率”、“电测深曲线”和“成井结构”,因绘图需要,将“地层柱状”和“岩芯采取率”按2列输入,“成井结构”按3列输入,总共需要输入11列。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;这里以第一列“地层时代”为例,列名称直接输入“地层时代”,列内容中,列类型选择【钻孔柱状图】,图案选择【地层/岩土材料图例】,插入字段选择【表格属性-数据】中的【地层描述】,即后续地层时代在地层描述中输入即可。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230521618829.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;其他列类似操作,需要注意的是,当需要选择深度坐标轴时,比如“地层柱状”和“岩芯采取率”左侧均有深度坐标,列的名称可以留空,列内容直接在类型中选择【深度坐标轴】。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230542304748.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;当输入列内容为“岩芯采取率”和“电测深曲线”时,列类型注意选择【深度图标】,在【添加系列】时选择相应的内容。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230568103826.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;当列定义完成后,如下图所示。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230586935917.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据表格样式,调整每列的相对宽度,得到更美观的表格样式。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230604922706.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;自此,整个出图样式就定义完成,将出图规程的名称定义为“水文钻孔”,规程类别选择【柱状剖面】。</p><p>2 录入数据</p><p>&nbsp; &nbsp; &nbsp; &nbsp;在【勘察数据】中录入水文钻孔的数据信息,点击【添加】,选择【水井】,在弹出的窗口中录入相关信息,可以看到自定义的钻孔信息、岩芯采取率和电测深曲线都在目录内。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230635605573.png" alt="image.png"/></p><p>2.1 录入基础信息</p><p>&nbsp; &nbsp; &nbsp; &nbsp;录入钻孔信息,直接输入文字或者数字。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230653430702.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;录入地层信息,输入不同深度的的岩土材料,选择相应的颜色和花纹,地层描述中备注地质年代。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230677639568.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;录入成井结构的花纹样式,可以在图例中选择类似的样式,也可以用纯色的形式模拟。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230697626068.png" alt="image.png"/></p><p>2.2 录入深度数据</p><p>&nbsp; &nbsp; &nbsp; &nbsp;对于岩芯采取率和电测深曲线,需要录入随深度的变化数据,这里可以导入excel数据或者进行单个录入。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230716250387.png" alt="image.png"/></p><p>3 出图效果</p><p>&nbsp; &nbsp; &nbsp; &nbsp;录入完数据后,保存信息,到【柱状剖面】界面中,选中该钻孔,选择【打印日志】,即可得到柱状图。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230742130746.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;柱状图效果如下,对于填充效果、文字大小和线性属性还可以在模板中人为调整。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230782133094.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;图件可以保存为PDF或者word格式,其他的钻孔录入数据后,就可以用已经定义好的模版进行批量的出图。</p>

关于锚索预应力的问题

岩土工程库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 1233 次浏览 • 2024-06-25 16:30 • 来自相关话题

geo5边坡毕肖普法表格在哪下载

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 1396 次浏览 • 2024-05-07 11:12 • 来自相关话题

土质边坡稳定计算,挡土墙作为刚性材料,能按第2工况输入吗?

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 1095 次浏览 • 2024-05-07 11:08 • 来自相关话题

用边坡开挖状态的最大剩余下滑力对应的滑面做锚索支护设计可以吗?

岩土工程tangyuxi 回答了问题 • 2 人关注 • 3 个回答 • 3773 次浏览 • 2024-05-07 11:05 • 来自相关话题

GEO5计算双坡治理,能一个模型计算吗?

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 989 次浏览 • 2024-04-02 09:52 • 来自相关话题

条新动态, 点击查看
激活教程请查看这里:个人版激活教程激活后可以打印计算书。
激活教程请查看这里:个人版激活教程激活后可以打印计算书。

如何获取GEO5 2018新增模块许可证?

库仑产品库仑吴汶垣 发表了文章 • 0 个评论 • 5037 次浏览 • 2018-01-30 21:32 • 来自相关话题

注:本说明仅适用于GEO5年费版(个人版)客户,购买了GEO5企业版的客户请与您的客户经理联系。GEO5 2018版新增「三维地质建模」,「扩展基础静探标贯分析」,「Redi-Rock挡土墙」等三个模块。个人版已购客户或正在免费试用软件的客户可以通过GEO5在线更新功能直接升级到2018版,但是升级后无法使用新增的3个模块,下面介绍获取新增模块许可证的方法。1. 更新软件在开始菜单的「GEO5 CHN」文件夹下找到「更新GEO5 CHN」并点击,更新软件至最新版,然后测试新增模块是否能正常使用。对于可以正常使用的情况,略过后续步骤。注:2018年1月31日之后获得个人版激活码的客户可以直接使用新增模块,略过后面的步骤。2. 生成本地最新许可证信息 - c2v文件下载获取当前许可证信息工具GEO5个人版激活工具-RUS.rar,并解压到桌面,如下图。注:该版本为中文版与英文版功能完全一致。双击并启动RUS工具“GEO5个人版激活工具-RUS.exe”,如下图。选择“更新现有保护锁”,并点击“收集信息”按钮,保存生成的C2V文件到本地。如果C2V文件生成成功,RUS主窗口中会显示“已获取到指纹”。3. 发送生成的c2v文件至库仑技术支持邮箱(support@kulunsoft.com)将第一步中生成的c2v文件发送至support@kulunsoft.com邮箱,邮件请按如下格式填写,以方便我们及时与您对接:邮件名:2018许可更新-姓名-单位邮件正文:联系方式、是否已购买GEO5、购买内容等信息。接下来请注意查收我们的回复邮件,邮件中我们会附上您的新许可证 - v2c文件。4. 应用新的V2C文件,更新许可证完成双击启动第一步中下载的RUS工具,并切换到「应用许可证文件」。在更新文件中导入邮件中您收到的v2c文件,并点击「应用更新」。应用更新成功后,RUS主窗口中会显示如下信息。至此,您的GEO5 2018版已可以使用新增模块,若仍然无法使用,请直接回复给您发送v2c文件的邮箱。注:如果RUS应用V2C文件不成功,点击这里 查看全部
<blockquote><p>注:本说明仅适用于GEO5年费版(个人版)客户,购买了GEO5企业版的客户请与您的客户经理联系。</p></blockquote><p>GEO5 2018版新增「三维地质建模」,「扩展基础静探标贯分析」,「Redi-Rock挡土墙」等三个模块。个人版已购客户或正在免费试用软件的客户可以通过GEO5在线更新功能直接升级到2018版,但是升级后无法使用新增的3个模块,下面介绍获取新增模块许可证的方法。</p><p><strong>1. 更新软件</strong></p><p>在开始菜单的「GEO5 CHN」文件夹下找到「更新GEO5 CHN」并点击,更新软件至最新版,然后测试新增模块是否能正常使用。对于可以正常使用的情况,略过后续步骤。</p><blockquote><p>注:2018年1月31日之后获得个人版激活码的客户可以直接使用新增模块,略过后面的步骤。</p></blockquote><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1517318148134737.png" alt="blob.png"/></p><p><strong>2. 生成本地最新许可证信息 - c2v文件</strong></p><p>下载获取当前许可证信息工具<img src="https://wen.kulunsoft.com/stat ... ot%3B style="max-width: 650px; white-space: normal; box-sizing: border-box; border: 0px; vertical-align: middle; margin: 10px 2px 10px 0px;"/><a href="https://wen.kulunsoft.com/uplo ... BGEO5个人版激活工具-RUS.rar</a>,并解压到桌面,如下图。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1512112451495184.png" alt="blob.png" style="box-sizing: border-box; border: 0px; vertical-align: middle; max-width: 650px; margin: 10px 0px;"/></p><blockquote><p>注:该版本为中文版与英文版功能完全一致。</p></blockquote><p>双击并启动RUS工具“GEO5个人版激活工具-RUS.exe”,如下图。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1517319201248147.png" alt="143857vk4hy9uk3p1wip3g.png"/></p><p>选择“更新现有保护锁”,并点击“收集信息”按钮,保存生成的C2V文件到本地。如果C2V文件生成成功,RUS主窗口中会显示“已获取到指纹”。</p><p><strong>3. 发送生成的c2v文件至库仑技术支持邮箱(support@kulunsoft.com)</strong></p><p>将第一步中生成的c2v文件发送至support@kulunsoft.com邮箱,邮件请按如下格式填写,以方便我们及时与您对接:</p><blockquote><p>邮件名:2018许可更新-姓名-单位</p><p>邮件正文:联系方式、是否已购买GEO5、购买内容等信息。</p></blockquote><p>接下来请注意查收我们的回复邮件,邮件中我们会附上您的新许可证 - v2c文件。</p><p><strong>4. 应用新的V2C文件,更新许可证完成</strong></p><p>双击启动第一步中下载的RUS工具,并切换到「应用许可证文件」。在更新文件中导入邮件中您收到的v2c文件,并点击「应用更新」。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1517319336993076.png" alt="143912j0h0am1nz4n94zje.png"/></p><p>应用更新成功后,RUS主窗口中会显示如下信息。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1517319371749171.png" alt="143916esx6cimp336mstrx.png"/></p><p>至此,您的GEO5 2018版已可以使用新增模块,若仍然无法使用,请直接回复给您发送v2c文件的邮箱。</p><blockquote><p>注:如果RUS应用V2C文件不成功,点击<a href="/dochelp/150" target="_blank">这里</a></p></blockquote>

如何使用GEO5设计桩板式挡墙

库仑产品库仑戚工 发表了文章 • 0 个评论 • 8600 次浏览 • 2017-09-08 16:23 • 来自相关话题

  本文主要说明采用桩板墙支挡边坡时GEO5中的设计流程。情况一  根据现场勘察情况,已探明有明显滑动面或软弱面,此时很容易判断边坡破坏模式为滑坡滑动破坏,则采用GEO5“土质边坡稳定分析”模块和“抗滑桩设计”模块进行设计。此时桩板墙受力模式为滑面以上桩后受滑坡剩余下滑力,滑面以上桩前受剩余抗滑力,滑面以下为嵌固段,桩土之间采用土弹簧模拟,如下图所示。  此时,只要按照抗滑桩设计流程进行设计即可,或者采用“土质边坡稳定分析”模块计算得到桩后滑坡推力和桩前滑体抗力后再采用“抗滑桩设计”模块进行设计即可。关于抗滑桩的设计流程,请参考《GEO5工程设计手册》中的:第十章:抗滑桩设计。  “抗滑桩设计”模块可以完成桩的变形、内力和配筋计算,关于板的计算,将在本文章的后面部分介绍。情况二  现场勘测不到滑动面,此时需要用GEO5“土质边坡稳定分析”模块、“深基坑支护结构分析”模块、“土压力计算”模块和“抗滑桩设计”模块分别考虑两种不同的破坏模式,即滑坡破坏模式或基坑破坏模式,比较二者计算结果,选择最不利的一种情况作为后续配筋验算指标。滑坡破坏模式的计算和情况一相同,基坑破坏模式则按照基坑进行计算,其受力模式如下图所示。  此时,采用“深基坑支护结构分析”模块按照基坑设计的流程进行设计即可。关于基坑的设计流程,请参考《GEO5工程设计手册》中的:第六章:单支点锚拉式排桩基坑支护分析  关于滑坡破坏模式和基坑破坏模式,其在配筋上有一点不同,需要注意:  滑坡破坏模式中采用剩余下滑力作为荷载,而剩余下滑力是在设计安全系数下计算得到的,也就是说剩余下滑力是荷载的设计值。例如设计安全系数取1.3,那么得到的剩余下滑力是已经考虑了安全系数1.3的设计值。因此,在进行配筋验算时,采用这种破坏模式计算得到的内力值为设计值,无需再单独考虑内力的分项系数。  基坑破坏模式中采用土压力作为荷载,土压力计算时并没有单独考虑安全系数,相当于安全系数为1,也就是说土压力是荷载的标准值。因此,在进行配筋验算时,采用这种破坏模式计算得到的内力值为标准值,需要单独考虑内力的分项系数。基坑规范中要求此分项系数不小于1.25。板的设计  桩板式挡墙采用的大部分均为预制板,通常情况下可不用单独验算,如果需要计算,按照下述方式手算即可。注:板的验算会在后续的GEO5“抗滑桩设计”和“深基坑支护结构分析”模块的更新中加入。(当前版本为GEO5 2017)  对于同一种类型的板,选择一跨内最低端的板下边缘水平荷载(土压力或剩余下滑力)作为该类型板上的荷载,如下图所示。根据铁路路基支挡结构规范(TB10025-2006),该荷载可以乘以0.7~0.8的折减系数。  确定作用在板上的荷载后,对于前置板(即板和桩采用钢筋链接),板和桩的连接处按照刚接处理,对于后置板(后插的预制板),板和钢筋的连接处按照铰接处理,如下图所示。  对于后置板,其最大弯矩和剪力计算如下(其中l为一跨的板长或桩的净距。):  对于前置板,其最大弯矩和剪力计算如下:  得到最大弯矩和剪力后,按照混凝土结构设计规范进行配筋验算即可。 查看全部
<p>  本文主要说明采用桩板墙支挡边坡时GEO5中的设计流程。</p><p><strong>情况一</strong></p><p>  根据现场勘察情况,已探明有明显滑动面或软弱面,此时很容易判断边坡破坏模式为滑坡滑动破坏,则采用GEO5“土质边坡稳定分析”模块和“抗滑桩设计”模块进行设计。此时桩板墙受力模式为滑面以上桩后受滑坡剩余下滑力,滑面以上桩前受剩余抗滑力,滑面以下为嵌固段,桩土之间采用土弹簧模拟,如下图所示。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1504858793758890.png" alt="blob.png"/></p><p>  此时,只要按照抗滑桩设计流程进行设计即可,或者采用“土质边坡稳定分析”模块计算得到桩后滑坡推力和桩前滑体抗力后再采用“抗滑桩设计”模块进行设计即可。关于抗滑桩的设计流程,请参考《GEO5工程设计手册》中的:<a href="/dochelp/1649" target="_blank" textvalue="第十章:抗滑桩设计">第十章:抗滑桩设计</a>。</p><p>  “抗滑桩设计”模块可以完成桩的变形、内力和配筋计算,关于板的计算,将在本文章的后面部分介绍。</p><p><strong>情况二</strong></p><p>  现场勘测不到滑动面,此时需要用GEO5“土质边坡稳定分析”模块、“深基坑支护结构分析”模块、“土压力计算”模块和“抗滑桩设计”模块分别考虑两种不同的破坏模式,即滑坡破坏模式或基坑破坏模式,比较二者计算结果,选择最不利的一种情况作为后续配筋验算指标。滑坡破坏模式的计算和情况一相同,基坑破坏模式则按照基坑进行计算,其受力模式如下图所示。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1504858813205417.png" alt="blob.png"/></p><p>  此时,采用“深基坑支护结构分析”模块按照基坑设计的流程进行设计即可。关于基坑的设计流程,请参考《GEO5工程设计手册》中的:<a href="/dochelp/80" target="_blank" textvalue="第六章:单支点锚拉式排桩基坑支护分析">第六章:单支点锚拉式排桩基坑支护分析</a></p><p>  关于滑坡破坏模式和基坑破坏模式,其在配筋上有一点不同,需要注意:</p><p>  滑坡破坏模式中采用剩余下滑力作为荷载,而剩余下滑力是在设计安全系数下计算得到的,也就是说剩余下滑力是荷载的设计值。例如设计安全系数取1.3,那么得到的剩余下滑力是已经考虑了安全系数1.3的设计值。因此,在进行配筋验算时,采用这种破坏模式计算得到的内力值为设计值,无需再单独考虑内力的分项系数。</p><p>  基坑破坏模式中采用土压力作为荷载,土压力计算时并没有单独考虑安全系数,相当于安全系数为1,也就是说土压力是荷载的标准值。因此,在进行配筋验算时,采用这种破坏模式计算得到的内力值为标准值,需要单独考虑内力的分项系数。基坑规范中要求此分项系数不小于1.25。</p><p><strong>板的设计</strong></p><p>  桩板式挡墙采用的大部分均为预制板,通常情况下可不用单独验算,如果需要计算,按照下述方式手算即可。</p><blockquote><p>注:板的验算会在后续的GEO5“抗滑桩设计”和“深基坑支护结构分析”模块的更新中加入。(当前版本为GEO5&nbsp;2017)</p></blockquote><p>  对于同一种类型的板,选择一跨内最低端的板下边缘水平荷载(土压力或剩余下滑力)作为该类型板上的荷载,如下图所示。根据铁路路基支挡结构规范(TB10025-2006),该荷载可以乘以0.7~0.8的折减系数。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1504858836361793.png" alt="blob.png"/></p><p>  确定作用在板上的荷载后,对于前置板(即板和桩采用钢筋链接),板和桩的连接处按照刚接处理,对于后置板(后插的预制板),板和钢筋的连接处按照铰接处理,如下图所示。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1504858852323806.png" alt="blob.png"/></p><p>  对于后置板,其最大弯矩和剪力计算如下(其中<em>l</em>为一跨的板长或桩的净距。):</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1504858882237047.png" alt="blob.png"/></p><p>  对于前置板,其最大弯矩和剪力计算如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1504858893584952.png" alt="blob.png"/></p><p>  得到最大弯矩和剪力后,按照混凝土结构设计规范进行配筋验算即可。</p><p><br/></p>

GEO5快速入门指南

库仑产品库仑戚工 发表了文章 • 0 个评论 • 9982 次浏览 • 2017-03-01 14:52 • 来自相关话题

GEO5是一款非常容易学习和掌握的岩土设计软件,我们根据软件特点、学习和教学经验,建议大家采用下面的顺序和思路进行GEO5软件学习,多数用户反馈可以在1个小时内掌握GEO5的基本操作和目标模块的使用。第一步: GEO5基础功能学习内容:学习GEO5所有模块通用的基础功能。库仑问答地址:《GEO5入门课程》第一节《基本操作—窗口布局与基本操作》腾讯课堂地址:GEO5初级培训课程百度云下载地址:https://pan.baidu.com/s/1zfytVc9LKdgLXsTSkeXNHA 密码:s3ce第二步:根据项目需要,在岩土问题九大解决方案中选择具体解决方案对应的软件模块进行基础学习。内容:针对岩土解决方案(边坡稳定分析、挡土墙设计、基坑设计、浅基础设计、深基础设计、固结沉降分析、隧道设计、三维地质建模、有限元分析),学习相应软件模块的基本操作。库仑问答地址:《GEO5入门课程》第十节《边坡稳定分析》腾讯课堂地址:GEO5初级培训课程百度云下载地址:https://pan.baidu.com/s/1zfytVc9LKdgLXsTSkeXNHA 密码:s3ce至此便可以基本掌握GEO5软件的使用操作。如果想进一步提高对计算理论的理解和灵活使用GEO5的水平,可以进行第三步学习。第三步:GEO5高级课程学习内容:学习GEO5各解决方案下各个模块的计算原理,各个参数的取值方法,以及在实际岩土工程设计项目中需要注意的一些问题和使用技巧。库仑问答地址:《GEO5高级课程》第一节《基坑设计—土压力计算和基坑设计模块原理》腾讯课堂地址:https://ke.qq.com/course/269426百度云下载地址:https://pan.baidu.com/s/1VOdf8KrUsMUPPmiSr5UO8g 密码:ykx3文档学习资料此外,对喜欢阅读文档教程进行软件学习的朋友,我们提供了设计和用户手册,大家可以根据自己的需要选择学习。GEO5工程设计手册:点击这里GEO5工程实例手册:点击这里GEO5用户手册:即GEO5自带帮助文档,关于帮助文档的使用请访问:GEO5入门课程-帮助文档。在线地址:GEO5在线帮助。库仑问答GEO5话题:可以在库仑问答的「话题」页面中选择感兴趣的话题文章和问答进行学习。地址:GEO5话题广场最后,在任何时候都可以通过F1键获取GEO5软件的自带帮助,而且帮助文档会根据当前所在的软件窗口自动定位到相应的帮助部分。同时,也可以在库仑问答平台中发布问题,我们的技术人员、专家或者工程师都会为您即时解答。对于已经购买了GEO5的客户,您还可以向我们的销售工程师申请VIP通道权限:库仑VIP通道简介。 查看全部
<p>GEO5是一款非常容易学习和掌握的岩土设计软件,我们根据软件特点、学习和教学经验,建议大家采用下面的顺序和思路进行GEO5软件学习,多数用户反馈可以在1个小时内掌握GEO5的基本操作和目标模块的使用。</p><p><span style="color: #FF0000;"><strong>第一步: GEO5基础功能学习</strong></span></p><p>内容:学习GEO5所有模块通用的基础功能。</p><p>库仑问答地址:<a href="/dochelp/12" target="_blank" style="line-height: 1.5em;">《GEO5入门课程》第一节《基本操作—窗口布局与基本操作》</a></p><p><span style="line-height: 1.5em;">腾讯课堂地址:<a href="https://ke.qq.com/course/26736 ... ot%3B target="_blank">GEO5初级培训课程</a></span></p><p>百度云下载地址:<a href="https://pan.baidu.com/s/1zfytV ... ot%3B target="_blank">https://pan.baidu.com/s/1zfytV ... gt%3B 密码:s3ce</p><p><span style="color: #FF0000;"><strong>第二步:根据项目需要,在岩土问题九大解决方案中选择具体解决方案对应的软件模块进行基础学习。</strong></span></p><p><span style="line-height: 1.5em;">内容:针对岩土解决方案(边坡稳定分析、挡土墙设计、基坑设计、浅基础设计、深基础设计、固结沉降分析、隧道设计、三维地质<span style="line-height: 1.5em;">建模、有限元分析),</span>学习相应软件模块的基本操作。</span><br/></p><p><span style="line-height: 1.5em;">库仑问答地址:</span><a href="/dochelp/22" target="_blank" style="line-height: 1.5em;">《GEO5入门课程》第十节《边坡稳定分析》</a></p><p>腾讯课堂地址:<a href="https://ke.qq.com/course/26736 ... BGEO5初级培训课程</a></p><p>百度云下载地址:<a href="https://pan.baidu.com/s/1zfytV ... sp%3B密码:s3ce<span style="line-height: 1.5em;"></span></p><p>至此便可以基本掌握GEO5软件的使用操作。如果想进一步提高对计算理论的理解和灵活使用GEO5的水平,可以进行第三步学习。</p><p><span style="color: #FF0000;"><strong>第三步:GEO5高级课程学习</strong></span></p><p>内容:学习GEO5各解决方案下各个模块的计算原理,各个参数的取值方法,以及在实际岩土工程设计项目中需要注意的一些问题和使用技巧。</p><p>库仑问答地址:<a href="http://wen.kulunsoft.com/dochelp/51" target="_blank" textvalue="《GEO5高级课程》第一节《基坑设计—土压力计算和基坑设计模块原理》" style="line-height: 1.5em;">《GEO5高级课程》第一节《基坑设计—土压力计算和基坑设计模块原理》</a></p><p>腾讯课堂地址:<a href="https://ke.qq.com/course/269426" target="_blank">https://ke.qq.com/course/26942 ... gt%3B百度云下载地址:<a href="https://pan.baidu.com/s/1VOdf8 ... ot%3B target="_blank">https://pan.baidu.com/s/1VOdf8 ... gt%3B 密码:ykx3<span style="line-height: 1.5em;"></span></p><p><span style="color: #FF0000;"><strong>文档学习资料</strong></span></p><p>此外,对喜欢阅读文档教程进行软件学习的朋友,我们提供了设计和用户手册,大家可以根据自己的需要选择学习。</p><ul class=" list-paddingleft-2" style="list-style-type: disc;"><li><p><strong>GEO5工程设计手册:</strong><a href="/dochelp/65" target="_blank" style="line-height: 1.5em;">点击这里</a></p></li><li><p><strong>GEO5工程实例手册:</strong><a href="/dochelp/69" target="_blank" title="工程实例手册">点击这里</a></p></li><li><p><strong>GEO5用户手册:</strong>即GEO5自带帮助文档,关于帮助文档的使用请访问:<a href="/dochelp/178" target="_blank">GEO5入门课程-帮助文档</a>。在线地址:<a href="/dochelp/1" target="_blank">GEO5在线帮助</a>。</p></li><li><p><strong>库仑问答GEO5话题:</strong>可以在库仑问答的「话题」页面中选择感兴趣的话题文章和问答进行学习。地址:<a href="https://wen.kulunsoft.com/topi ... ot%3B target="_blank">GEO5话题广场</a></p></li></ul><p><span style="line-height: 1.5em;">最后,在任何时候都可以通过F1键获取GEO5软件的自带帮助,而且帮助文档会根据当前所在的软件窗口自动定位到相应的帮助部分。同时,也可以在库仑问答平台中发布问题,我们的技术人员、专家或者工程师都会为您即时解答。</span></p><p><span style="line-height: 1.5em;">对于已经购买了GEO5的客户,您还可以向我们的销售工程师申请VIP通道权限:<a href="/article/259" target="_blank">库仑VIP通道简介</a>。</span></p>

geo5可以出英文计算书吗

回答

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 77 次浏览 • 2024-12-23 14:09 • 来自相关话题

锚杆挡墙用GEO5怎么设计,没有单独模块吗

回答

库仑产品Chaos 回答了问题 • 4 人关注 • 2 个回答 • 2937 次浏览 • 2024-08-22 15:05 • 来自相关话题

geo5边坡毕肖普法表格在哪下载

回答

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 1396 次浏览 • 2024-05-07 11:12 • 来自相关话题

GEO5计算双坡治理,能一个模型计算吗?

回答

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 989 次浏览 • 2024-04-02 09:52 • 来自相关话题

基坑降水分析降水井设置问题

回答

岩土工程南京库仑张工 回答了问题 • 2 人关注 • 1 个回答 • 1282 次浏览 • 2024-01-24 18:52 • 来自相关话题

全埋式抗滑桩如何设置

回答

库仑产品杨帆 回答了问题 • 3 人关注 • 2 个回答 • 974 次浏览 • 2024-01-12 10:19 • 来自相关话题

石笼挡土墙基底应力比等于1这个合理吗,什么原因导致的?

回答

库仑产品南京库仑张工 回答了问题 • 2 人关注 • 1 个回答 • 841 次浏览 • 2023-12-21 09:29 • 来自相关话题

请问GEO5渗流模块后处理如何看水力梯度呢

回答

岩土工程gk 回答了问题 • 2 人关注 • 2 个回答 • 973 次浏览 • 2023-11-08 14:46 • 来自相关话题

DXF文件导入GEO5,图形的比例有什么要求吗?导入时项目单位如何设置?

回答

岩土工程刘天 回答了问题 • 4 人关注 • 2 个回答 • 4173 次浏览 • 2023-11-02 09:50 • 来自相关话题

GEO5深基坑支护结构分析进行分析时总是弹窗告知“浮点除数为零”,是什么原因,如何解决?

回答

库仑产品南京库仑张工 回答了问题 • 2 人关注 • 1 个回答 • 909 次浏览 • 2023-10-30 14:09 • 来自相关话题

三维地质建立时,显示的不兼容是怎么回事

回答

库仑产品丰盛 回答了问题 • 2 人关注 • 2 个回答 • 908 次浏览 • 2023-09-15 10:38 • 来自相关话题

模型未生成,地层面没有点

回答

库仑产品库仑刘工 回答了问题 • 3 人关注 • 2 个回答 • 853 次浏览 • 2023-09-11 14:33 • 来自相关话题

从岩土有限元调用边坡稳定性模块失败

回答

岩土工程库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 837 次浏览 • 2023-08-01 12:01 • 来自相关话题

石笼挡土墙

回答

岩土工程库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 876 次浏览 • 2023-07-27 11:14 • 来自相关话题

石笼挡土墙

回答

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 887 次浏览 • 2023-07-27 11:12 • 来自相关话题

关于抗滑桩设计岩土作用力桩前抗力类型

回答

库仑产品杨帆 回答了问题 • 3 人关注 • 2 个回答 • 1163 次浏览 • 2023-04-13 14:05 • 来自相关话题

深基坑分析中的计算书中的结构前被动土压力数为什么很大

回答

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 957 次浏览 • 2023-04-11 15:59 • 来自相关话题

深基坑支护分析中混凝土灌注桩的配筋和冠梁的配筋都在哪

回答

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 1013 次浏览 • 2023-03-27 14:11 • 来自相关话题

加筋土挡墙面板受力状况

回答

库仑产品南京库仑张工 回答了问题 • 2 人关注 • 1 个回答 • 966 次浏览 • 2023-03-13 10:34 • 来自相关话题

剩余下滑力曲线在GEO5中的使用

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 276 次浏览 • 2024-11-06 10:14 • 来自相关话题

       不平衡推力方法(隐式&显式)是国内计算边坡和滑坡稳定性时常用的方法,在GEO5中,除了可以采用该方法对边坡稳定性进行计算,软件还可以给出沿滑动面的剩余下滑力传递曲线。部分工程师在使用时并不清楚怎么查看该曲线,也不明白其中原理,本文对此进行说明。1、如何在GEO5中查看剩余下滑力曲线       首先需要明确的是,不是所有计算方法都能得到该曲线。剩余下滑力实际是通过条块间条间力的传递而获得,所以用户必须使用考虑条间力的分析方法才能看到该曲线,最常用的就是不平衡推力方法,隐式和显式都可以,如果采用bishop法是看不到该曲线的,其他的严格条分法,例如M-P,简布法和斯宾塞法也都能获取该曲线。       当选择考虑条间力的方法计算之后,点击软件界面左侧面板中的齿轮按钮,勾选分析中的“剩余下滑力”和“数值”选项,那么就能在图形显示窗口中查看剩余下滑力曲线。2、剩余下滑力曲线的绘制原则       GEO5软件中剩余下滑力曲线绘制原理参考了《铁路路基支挡结构设计规范》中滑坡推力曲线的绘制方法。规范中的滑坡推力曲线       曲线范围从滑动面的剪入口开始一直到剪出口为止,分段数量等于条块数量,如果是圆弧滑动,在GEO5软件中默认分为20个条块。GEO5中绘制的剩余下滑力曲线有几点需要说明:①  软件绘制的是剩余下滑力曲线,并不是滑坡推力曲线,剩余下滑力和抗滑桩所受的滑坡推力之间还需要考虑所在条块滑面角度的影响;②  剩余下滑力曲线的形状和数值大小跟滑面位置、岩土材料参数、支护力的大小、设计安全系数取值等因素相关;③  当剪入口位置的条块自身稳定性大于设计安全系数时,该条块则无剩余下滑力,依此类推,直到出现条块稳定性小于设计安全系数时,剩余下滑力从正值绘制,也就是剪入口位置的条块剩余下滑力一定为非负值;④  当计算滑动面整体稳定性大于设计安全系数时,剪出口位置的剩余下滑力会为负值,这里并没归为0,是为了方便用户查看边坡的支护或者自身稳定有多大的余量。加了支护后的剩余下滑力曲线3、剩余下滑力曲线的应用(1)确定下滑段和阻滑段位置       最常见的剩余下滑力曲线就是先上升后下降的弧线,当遇到地形复杂,同时坡面叠加超载和支护结构的时候,曲线可能存在多个上升段和下降段,这里的上升段可以认为是下滑段,下降段可以认为是阻滑段。(2)确定桩后滑坡推力       当采用抗滑桩支挡时,桩后的滑坡推力大小为该桩设计位置条块的剩余下滑力乘以滑面倾角的余弦值。       除了滑坡推力,桩前实际还受到滑体抗力的作用,很多用户对于滑体抗力如何计算并不清楚,这里顺带做个说明。       以下图为例,这里对应着滑面绘制了4条曲线。曲线a是极限状态的传递曲线,特点是剪出口和剪入口位置力都为0,表征边坡实际状况,也就是曲线以边坡实际的稳定系数来绘制;曲线b为推力传递曲线,从剪入口开始到剪出口,以边坡设计安全系数绘制;曲线c为抗力传递曲线,从剪出口开始反向到剪入口,同样以边坡设计安全系数绘制;曲线d为推力和抗力在抗滑桩位置处的叠加曲线,其中T为滑坡推力,P就是滑体抗力,d曲线为抗滑桩刚好达到边坡稳定系数等于设计安全系数的支撑效果,但不一定意味着桩的极限状态。       根据曲线可以看出T,P的数值跟设桩位置相关,同时跟设计安全系数的取值相关,简单理解为1.35的设计安全系数会比1.2的设计安全系数得到的推力更大。而抗力是否也会随着设计安全系数提高而增大呢,分两种情况,当桩前块体仍然满足增大后的设计安全系数时,抗力则相应增大,当桩前块体达不到增大后的设计安全系数时,抗力不仅不会增大,而是直接为0,这就是用户在查看抗滑桩受力时遇到桩前为0的原因。(3)其他应用       除了通过剩余下滑力曲线区分抗滑段与阻滑段,确定滑坡推力之外,还可以通过曲线下降的斜率判断不同区域的抗滑效果,哪些区段采用削方减载效果会更好,抗滑桩设置于哪些地段效率更高。尤其是对于滑坡整治项目,可以充分利用下滑力曲线进行辅助分析。 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp;不平衡推力方法(隐式&amp;显式)是国内计算边坡和滑坡稳定性时常用的方法,在GEO5中,除了可以采用该方法对边坡稳定性进行计算,软件还可以给出沿滑动面的剩余下滑力传递曲线。部分工程师在使用时并不清楚怎么查看该曲线,也不明白其中原理,本文对此进行说明。</p><p>1、如何在GEO5中查看剩余下滑力曲线</p><p>&nbsp; &nbsp; &nbsp; &nbsp;首先需要明确的是,不是所有计算方法都能得到该曲线。剩余下滑力实际是通过条块间条间力的传递而获得,所以用户必须使用考虑条间力的分析方法才能看到该曲线,最常用的就是不平衡推力方法,隐式和显式都可以,如果采用bishop法是看不到该曲线的,其他的严格条分法,例如M-P,简布法和斯宾塞法也都能获取该曲线。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730858794347194.png" alt="image.png" width="504" height="324" style="width: 504px; height: 324px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;当选择考虑条间力的方法计算之后,点击软件界面左侧面板中的齿轮按钮,勾选分析中的“剩余下滑力”和“数值”选项,那么就能在图形显示窗口中查看剩余下滑力曲线。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730858828364736.png" alt="image.png"/></p><p>2、剩余下滑力曲线的绘制原则</p><p>&nbsp; &nbsp; &nbsp; &nbsp;GEO5软件中剩余下滑力曲线绘制原理参考了《铁路路基支挡结构设计规范》中滑坡推力曲线的绘制方法。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730859036672758.png" alt="image.png"/></p><p style="text-align: center;">规范中的滑坡推力曲线</p><p>&nbsp; &nbsp; &nbsp; &nbsp;曲线范围从滑动面的剪入口开始一直到剪出口为止,分段数量等于条块数量,如果是圆弧滑动,在GEO5软件中默认分为20个条块。GEO5中绘制的剩余下滑力曲线有几点需要说明:</p><p>①&nbsp; 软件绘制的是剩余下滑力曲线,并不是滑坡推力曲线,剩余下滑力和抗滑桩所受的滑坡推力之间还需要考虑所在条块滑面角度的影响;</p><p>②&nbsp; 剩余下滑力曲线的形状和数值大小跟滑面位置、岩土材料参数、支护力的大小、设计安全系数取值等因素相关;</p><p>③&nbsp; 当剪入口位置的条块自身稳定性大于设计安全系数时,该条块则无剩余下滑力,依此类推,直到出现条块稳定性小于设计安全系数时,剩余下滑力从正值绘制,也就是剪入口位置的条块剩余下滑力一定为非负值;</p><p>④&nbsp; 当计算滑动面整体稳定性大于设计安全系数时,剪出口位置的剩余下滑力会为负值,这里并没归为0,是为了方便用户查看边坡的支护或者自身稳定有多大的余量。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730859156395858.png" alt="image.png"/></p><p style="text-align: center;">加了支护后的剩余下滑力曲线</p><p>3、剩余下滑力曲线的应用</p><p>(1)确定下滑段和阻滑段位置</p><p>&nbsp; &nbsp; &nbsp; &nbsp;最常见的剩余下滑力曲线就是先上升后下降的弧线,当遇到地形复杂,同时坡面叠加超载和支护结构的时候,曲线可能存在多个上升段和下降段,这里的上升段可以认为是下滑段,下降段可以认为是阻滑段。</p><p>(2)确定桩后滑坡推力</p><p>&nbsp; &nbsp; &nbsp; &nbsp;当采用抗滑桩支挡时,桩后的滑坡推力大小为该桩设计位置条块的剩余下滑力乘以滑面倾角的余弦值。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;除了滑坡推力,桩前实际还受到滑体抗力的作用,很多用户对于滑体抗力如何计算并不清楚,这里顺带做个说明。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;以下图为例,这里对应着滑面绘制了4条曲线。曲线a是极限状态的传递曲线,特点是剪出口和剪入口位置力都为0,表征边坡实际状况,也就是曲线以边坡实际的稳定系数来绘制;曲线b为推力传递曲线,从剪入口开始到剪出口,以边坡设计安全系数绘制;曲线c为抗力传递曲线,从剪出口开始反向到剪入口,同样以边坡设计安全系数绘制;曲线d为推力和抗力在抗滑桩位置处的叠加曲线,其中T为滑坡推力,P就是滑体抗力,d曲线为抗滑桩刚好达到边坡稳定系数等于设计安全系数的支撑效果,但不一定意味着桩的极限状态。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730859231836626.png" alt="image.png" width="432" height="421" style="width: 432px; height: 421px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据曲线可以看出T,P的数值跟设桩位置相关,同时跟设计安全系数的取值相关,简单理解为1.35的设计安全系数会比1.2的设计安全系数得到的推力更大。而抗力是否也会随着设计安全系数提高而增大呢,分两种情况,当桩前块体仍然满足增大后的设计安全系数时,抗力则相应增大,当桩前块体达不到增大后的设计安全系数时,抗力不仅不会增大,而是直接为0,这就是用户在查看抗滑桩受力时遇到桩前为0的原因。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730859262502300.png" alt="image.png"/></p><p>(3)其他应用</p><p>&nbsp; &nbsp; &nbsp; &nbsp;除了通过剩余下滑力曲线区分抗滑段与阻滑段,确定滑坡推力之外,还可以通过曲线下降的斜率判断不同区域的抗滑效果,哪些区段采用削方减载效果会更好,抗滑桩设置于哪些地段效率更高。尤其是对于滑坡整治项目,可以充分利用下滑力曲线进行辅助分析。</p>

GEO5某城市道路加筋土挡墙设计

库仑产品南京库仑张工 发表了文章 • 0 个评论 • 857 次浏览 • 2024-08-22 15:03 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、加筋土式挡土墙设计1 项目背景       项目位于西南某地级市,建设内容为城市次干道。在此段道路初步设计中,道路左侧K0+580—K0+880段为填方边坡,道路高程为1226.818m—1241.374m,最高填方约40m,对应桩号K0+680的高程为1132.816m。因道路外侧相邻地块功能用途未确定,无建筑布局方案,故该段填方边坡在初步设计时拟采用坡率法放坡+截、排水方案处理,分为五级边坡,坡比分别为1:1.5、1:1.75、1:1.75、1:2、1:2,坡面用人字形骨架和植草。初步设计坡率法放坡平面布置图       在道路施工图设计阶段,拟建道路外侧地块建筑布局方案为整个台地由西向东逐步上行,在道路路侧沿线布置了某研究中心及宿舍区,场地内设置了消防车道,消防车道宽度7m。拟建道路桩号K0+700对应消防车道高程约1200m,原地面高程为1192.5m,拟建道路高程为1225.0m,与道路外侧地块消防车道最大填方高差约25m,与现状地面高差约32.5m。因建设用地受限,初步设计拟采用的坡率法放坡处理方案不可行,须考虑挡墙支护方案。2 工程地质条件       根据区域地质资料及附近工程的岩土工程勘察资料,场区上覆土层主要为第四系全新统人工堆积填土层(Q4ml)、冲积层(Q4al)、坡洪积层(Qdl+pl)、坡残积层(Qdl+el),基岩为新近系上新统昔格达组碎屑岩(NQx)及晚二叠世(P3γ)侵入岩。地层自上而下为:       (1)、人工填土层为新近堆填,结构疏松,承载力低,工程性质差。       (2)、冲积层之②1淤泥质粉质粘土层呈流塑~软塑状,属高压缩性软弱土,承载力低,工程性质极差;②2细砂层呈饱和、松散状,承载力较低,工程性质较差。       (3)、昔格达组坡残积土之③1粉质粘土层呈可塑状,具有一定承载力,工程性质较好;③2粉质粘土层呈硬塑状,承载力较高,工程性质较好;其遇水易软化。      (4)、花岗岩坡残积层之④1砂质粘性土呈可塑状,具有一定承载力,工程性质较好;④2砂质粘性土呈硬塑状,承载力较高,工程性质好;其遇水易软化。      (5)、昔格达组碎屑岩⑤承载力高,工程性质好;其遇水易软化。      (6)、花岗岩之全、强风化带(⑥1、⑥2、⑥3)承载力高,工程性质好;土状风化岩遇水易软化。      (7)、花岗岩之中、微风化带(⑥4、⑥5)岩石强度较高,工程性质好。岩土体物理力学参数建议值如下:3支护设计方案       因拟建道路场地位于冲沟,基底地基条件较差,路面有纵坡。设计采用灌注桩地基处理+3阶加筋土挡墙+自然放坡路堤+排水的支护措施,台阶水平设置。加筋土挡墙长度约200m,单阶墙高不超过10m,墙面结合实际地形和道路纵坡进行调整,两阶墙间设2m宽平台。路堤坡顶设截水沟,挡墙台阶及墙底设排水沟。挡墙两端墙高较矮,设计采用重力式挡墙与现状山体相接。       加筋土挡墙墙面采用采用C30预制混凝土面板,加筋材料采用整体钢塑土工格栅,竖向层间距0.4m。加筋结构回填区填料使用项目开挖弃方,综合内摩擦角不小于35度,压实度不小于93%。每阶挡墙下方设0.4m厚级配良好的碎石水平排水层,台阶处铺设一布一膜后采用素砼封闭,防止雨水下渗。加筋挡墙墙顶设置4m米1:1.5自然放坡路堤。加筋土挡墙平面、立面布置图,剖面布置及大样图如下:加筋土挡墙设计平面布置图加筋土挡墙立面布置图加筋土挡墙剖面及大样图4加筋土挡墙设计计算4.1挡墙参数设置        本项目挡墙设计合理使用年限为50年,场地按地震按烈度7度(0.15g)考虑地震荷载作用。挡墙工程安全等级为一级,一般工况下稳定安全系数Fs≥1.35,地震工况下安全系数Fs≥1.25。墙顶荷载35KPa。计算未考虑道路外侧场地回填的影响,将其视为安全储备。        加筋结构回填区填料参数Φd=35.0°,C=0 kPa,γ=18 KN/m3;加筋区后填土参数Φ=30.0°,C=0 kPa,γ=18 KN/m3;挡墙底灌注桩地基处理区域考虑置换做法,其参数取:Φ=24.0°,C=25kPa,γ=20KN/m3。4.2挡墙参数设置        加筋材料设计采用重庆永固的整体钢塑土工格栅。整体钢塑土工格栅采用整体成型工艺,钢塑复合材质,肋带的主要受力元件为条带内的高强冷拔钢丝,蠕变极小;经抗老化处理的聚乙烯保护层,具有耐酸、碱、盐腐蚀的化学特性,破断伸长率小,强度高;条带交叉交点结点分离力要求大于500N。设计力学及物理尺寸指标必须满足交通行业标准《公路工程土工合成材料 土工格栅 第1部分:钢塑格栅》(JT/T925.1-2014)的要求。整体钢塑土工格栅规格及技术参数见下表:4.3计算结果       一般工况下加筋土挡墙抗倾覆、滑移、加筋材料抗拉、抗拔及整体稳定计算结果如下:5 现场施工照片6 总结       本项目采用分阶式加筋土挡墙设计方案,减少了道路建设的用地,为道路外建设场地争取了建设用地的最大化;减少挡墙对地基承载力的要求,同时柔性的加筋土结构能适应较大的地基变形,节省了地基处理费用。       GEO5岩土软件加筋土挡墙模块不仅能计算单阶直立的加筋土挡墙,挡墙计算可定义多个工况阶段和多层土,可验算加筋土挡墙的内部稳定性和整体稳定性,还能计算分阶带面坡的加筋土挡墙和陡坡,计算书界面美观,给岩土工程师的工作带来了极大的方便。 查看全部
<p>使用模块:GEO5土质边坡稳定性分析、加筋土式挡土墙设计<br/></p><p><strong>1 项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;项目位于西南某地级市,建设内容为城市次干道。在此段道路初步设计中,道路左侧K0+580—K0+880段为填方边坡,道路高程为1226.818m—1241.374m,最高填方约40m,对应桩号K0+680的高程为1132.816m。因道路外侧相邻地块功能用途未确定,无建筑布局方案,故该段填方边坡在初步设计时拟采用坡率法放坡+截、排水方案处理,分为五级边坡,坡比分别为1:1.5、1:1.75、1:1.75、1:2、1:2,坡面用人字形骨架和植草。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724308791616041.png" alt="image.png"/></p><p style="text-align: center;">初步设计坡率法放坡平面布置图</p><p>&nbsp; &nbsp; &nbsp; &nbsp;在道路施工图设计阶段,拟建道路外侧地块建筑布局方案为整个台地由西向东逐步上行,在道路路侧沿线布置了某研究中心及宿舍区,场地内设置了消防车道,消防车道宽度7m。拟建道路桩号K0+700对应消防车道高程约1200m,原地面高程为1192.5m,拟建道路高程为1225.0m,与道路外侧地块消防车道最大填方高差约25m,与现状地面高差约32.5m。因建设用地受限,初步设计拟采用的坡率法放坡处理方案不可行,须考虑挡墙支护方案。</p><p><strong>2 工程地质条件</strong><br/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据区域地质资料及附近工程的岩土工程勘察资料,场区上覆土层主要为第四系全新统人工堆积填土层(Q<sub>4ml</sub>)、冲积层(Q<sub>4al</sub>)、坡洪积层(Q<sub>dl+pl</sub>)、坡残积层(Q<sub>dl+el</sub>),基岩为新近系上新统昔格达组碎屑岩(N<sub>Qx</sub>)及晚二叠世(P<sub>3γ</sub>)侵入岩。地层自上而下为:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(1)、人工填土层为新近堆填,结构疏松,承载力低,工程性质差。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(2)、冲积层之②<sub>1</sub>淤泥质粉质粘土层呈流塑~软塑状,属高压缩性软弱土,承载力低,工程性质极差;②<sub>2</sub>细砂层呈饱和、松散状,承载力较低,工程性质较差。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(3)、昔格达组坡残积土之③<sub>1</sub>粉质粘土层呈可塑状,具有一定承载力,工程性质较好;</p><p>③<sub>2</sub>粉质粘土层呈硬塑状,承载力较高,工程性质较好;其遇水易软化。</p><p>&nbsp; &nbsp; &nbsp; (4)、花岗岩坡残积层之④<sub>1</sub>砂质粘性土呈可塑状,具有一定承载力,工程性质较好;④<sub>2</sub>砂质粘性土呈硬塑状,承载力较高,工程性质好;其遇水易软化。</p><p>&nbsp; &nbsp; &nbsp; (5)、昔格达组碎屑岩⑤承载力高,工程性质好;其遇水易软化。</p><p>&nbsp; &nbsp; &nbsp; (6)、花岗岩之全、强风化带(⑥<sub>1</sub>、⑥<sub>2</sub>、⑥<sub>3</sub>)承载力高,工程性质好;土状风化岩遇水易软化。</p><p>&nbsp; &nbsp; &nbsp; (7)、花岗岩之中、微风化带(⑥<sub>4</sub>、⑥<sub>5</sub>)岩石强度较高,工程性质好。</p><p>岩土体物理力学参数建议值如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724308954768398.png" alt="image.png" width="524" height="619" style="width: 524px; height: 619px;"/></p><p><strong>3支护设计方案</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;因拟建道路场地位于冲沟,基底地基条件较差,路面有纵坡。设计采用灌注桩地基处理+3阶加筋土挡墙+自然放坡路堤+排水的支护措施,台阶水平设置。加筋土挡墙长度约200m,单阶墙高不超过10m,墙面结合实际地形和道路纵坡进行调整,两阶墙间设2m宽平台。路堤坡顶设截水沟,挡墙台阶及墙底设排水沟。挡墙两端墙高较矮,设计采用重力式挡墙与现状山体相接。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;加筋土挡墙墙面采用采用C30预制混凝土面板,加筋材料采用整体钢塑土工格栅,竖向层间距0.4m。加筋结构回填区填料使用项目开挖弃方,综合内摩擦角不小于35度,压实度不小于93%。每阶挡墙下方设0.4m厚级配良好的碎石水平排水层,台阶处铺设一布一膜后采用素砼封闭,防止雨水下渗。加筋挡墙墙顶设置4m米1:1.5自然放坡路堤。加筋土挡墙平面、立面布置图,剖面布置及大样图如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724308996339943.png" alt="image.png"/></p><p style="text-align: center;">加筋土挡墙设计平面布置图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724309016655439.png" alt="image.png"/></p><p style="text-align: center;">加筋土挡墙立面布置图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724309032241639.png" alt="image.png"/></p><p style="text-align: center;">加筋土挡墙剖面及大样图</p><p><strong>4加筋土挡墙设计计算</strong></p><p>4.1挡墙参数设置</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 本项目挡墙设计合理使用年限为50年,场地按地震按烈度7度(0.15g)考虑地震荷载作用。挡墙工程安全等级为一级,一般工况下稳定安全系数Fs≥1.35,地震工况下安全系数Fs≥1.25。墙顶荷载35KPa。计算未考虑道路外侧场地回填的影响,将其视为安全储备。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 加筋结构回填区填料参数Φ<sub>d</sub>=35.0°,C=0 kPa,γ=18 KN/m<sup>3</sup>;加筋区后填土参数Φ=30.0°,C=0 kPa,γ=18 KN/m<sup>3</sup>;挡墙底灌注桩地基处理区域考虑置换做法,其参数取:Φ=24.0°,C=25kPa,γ=20KN/m<sup>3</sup>。</p><p>4.2挡墙参数设置</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 加筋材料设计采用重庆永固的整体钢塑土工格栅。整体钢塑土工格栅采用整体成型工艺,钢塑复合材质,肋带的主要受力元件为条带内的高强冷拔钢丝,蠕变极小;经抗老化处理的聚乙烯保护层,具有耐酸、碱、盐腐蚀的化学特性,破断伸长率小,强度高;条带交叉交点结点分离力要求大于500N。设计力学及物理尺寸指标必须满足交通行业标准《公路工程土工合成材料 土工格栅 第1部分:钢塑格栅》(JT/T925.1-2014)的要求。整体钢塑土工格栅规格及技术参数见下表:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724309081776486.png" alt="image.png"/></p><p>4.3计算结果</p><p>&nbsp; &nbsp; &nbsp; &nbsp;一般工况下加筋土挡墙抗倾覆、滑移、加筋材料抗拉、抗拔及整体稳定计算结果如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724309369827679.png" alt="image.png" width="381" height="225" style="width: 381px; height: 225px;"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724309391475508.png" alt="image.png"/></p><p><strong>5 现场施工照片</strong></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724309755908691.png" alt="image.png" width="431" height="321" style="width: 431px; height: 321px;"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724309800793181.png" alt="image.png" width="430" height="320" style="width: 430px; height: 320px;"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724310159167671.png" alt="image.png" width="435" height="344" style="width: 435px; height: 344px;"/></p><p><strong>6 总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本项目采用分阶式加筋土挡墙设计方案,减少了道路建设的用地,为道路外建设场地争取了建设用地的最大化;减少挡墙对地基承载力的要求,同时柔性的加筋土结构能适应较大的地基变形,节省了地基处理费用。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;GEO5岩土软件加筋土挡墙模块不仅能计算单阶直立的加筋土挡墙,挡墙计算可定义多个工况阶段和多层土,可验算加筋土挡墙的内部稳定性和整体稳定性,还能计算分阶带面坡的加筋土挡墙和陡坡,计算书界面美观,给岩土工程师的工作带来了极大的方便。</p>

GEO5某路堑边坡稳定性分析和支护结构设计

库仑产品南京库仑张工 发表了文章 • 0 个评论 • 858 次浏览 • 2024-08-22 14:38 • 来自相关话题

1 项目背景        本项目地处海南省中部山区,是进一步巩固新时代脱贫攻坚、全面建成小康社会成果的生态+景观路规范,旅游+交通路,幸福+致富路,采用双向四车道高速公路标准,设计速度80公里/小时,路基宽度25.5米,设计荷载为公路-I级。        本项目此段深挖方高边坡位于K14+500-K14+600右侧,最高高度为28.13m,地层岩性自上而下为粉质粘土、强风化砂岩碎石及全-中风化砂岩,下部一级边坡中风化砂岩整体性较好,中部二级边坡岩层较为破碎,刷坡后外露表面为全风化泥质砂岩,手掰即碎,产状倾角接近水平,处于8°~11°之间,为顺倾,表层以下约1m左右为强风化砂岩,无明显层理,上部为粉质粘土及全风化砂岩,高边坡坡形为一级边坡坡率为1:1.0,二级及以上边坡坡率为1:1.25,分级坡高为8m,平台宽2m。目前边坡开挖至二级边坡坡脚处,三级边坡已施作人字形骨架,经过约5-6天的连续暴雨期,此段高边坡二级边坡发生了开裂变形,裂缝宽约1.0~1.5m,从二级边坡坡顶(三级边坡坡脚)开裂,坡顶及二级坡坡体两侧出现了典型的拉张裂缝和剪切裂缝,前缘有较为明显的挤压变形,并因变形受阻形成了顺滑动方向的扇形压张裂缝,大致平行与变形方向,两侧呈放射状分布,在持续暴雨作用下有发生进一步滑动破坏的可能。高边坡现状情况2 高边坡变形原因定性分析       目前此高边坡的二级边坡拉张裂缝及剪切裂缝已形成,并在前缘发现了扇形压张裂缝,剪切裂缝未完全贯通,根据现状估计,再经过1-2场同等强度的持续降雨可发生滑动破坏,综合分析,边坡变形受多方面因素影响。(1)降雨       高边坡发生变形最主要的外界影响因素是降雨,该地区降雨强度高且降雨次数及持续时间长,根据降雨相关资料收集,平均降雨天数在20天以上,降雨对边坡主要存在以下影响:       (a)软化效应:由于降雨的渗入作用,破碎的边坡岩土体将会被软化。软化作用主要包括对结构面的润滑和对滑带土的软化。地下水和滑带土作用后,能改变滑带土的物理性质,如增加含水率和孔隙比。除此之外,还会发生滑带土溶解作用、水化作用、氧化还原作用、沉淀作用和离子交换等作用。本高边坡滑带土中含有大量粘土矿物,离子交换作用能改变这些矿物的含量。溶解作用能使滑带土内产生溶蚀裂隙、空隙及孔洞等现象。       (b)力学作用:水流在边坡体上流动时,会对边坡表面产生冲刷力,降雨会通过滑坡体已有的入渗通道(张拉裂缝、空洞等)下渗至滑体内部,使得滑带土和部分土体处于饱和状态,岩土体抗剪强度降低,由于岩层破碎节理裂隙发育,强降雨作用后逐渐形成贯通的裂隙带,沿裂隙带发生变形破坏。(2)排水不及时       虽施工刷坡防护较为及时,但由于降雨期持续时间长,降雨强度大导致坡脚仍有大量积水未及时排出,加之二级边坡坡顶平台正在施工平台排水沟中还未贯通,导致上部坡面汇水直接进入岩层节理裂隙,这也是导致高边坡产生急剧变形的原因。(3)岩土体性质       坡面岩土体本身较为破碎,节理裂隙多,松散的岩土体结构为后期降雨进入地下提供了有利的入渗通道,岩土体在地下水作用下进一步崩解、软化和泥化,从而形成潜在滑面。边坡后缘出现的拉张裂缝3 边坡支护设计及稳定性计算3.1支护方案设计        经方案比选后,选择如下设计方案。首先清除变形区域的坡体,保证高边坡段不存在不稳定岩土体,然后可根据高边坡各级坡的岩土体性质对其采用合适的坡率+锚杆(索)支护的方案,坡率由稳定性计算确定,一级边坡维持原设计1:1坡率,对坡顶开挖宽平台后做10cm混凝土硬化,搭配平台排水沟,对一级坡采用厚层基材喷射植被防护,由于平台宽9.0m且平台硬化,上部边坡与一级边坡互不影响,暴雨期雨水无法进入边坡后缘,稳定性高,方案优势明显,清坡后二级坡与三级坡坡率为1:1,并施打预应力锚杆框架梁,起到固脚强腰作用(根据稳定性分析结果视潜在滑动面深度及岩土层情况也可选择锚杆框架梁),由于岩质边坡较为破碎,采用压力分散型锚杆,不仅工作时锚固段灌浆体剪应力较均匀,可有效抑制锚杆的蠕变,而且锚杆全长采用无粘结钢绞线,锚杆工作时灌浆体处于受压状态,因而具有良好的防腐性能,是目前在软弱破碎岩体和土体锚固工程中大力推广使用的锚杆。3.2边坡稳定性分析流程(1)分析工况       边坡稳定性分析工况根据项目特点及边坡基本特征,共分为2组计算工况。天然工况下的稳定性,考虑天然自重+地下水位的组合,无地下水时考虑天然自重情况下的稳定性。暴雨工况下的稳定性及地震工况下的稳定性,根据路基规范3.6.11条条文说明要求作为校核工况,对暴雨工况下边坡采用地勘报告提供的饱和抗剪强度进行计算。其中路基安全系数取值遵循以下原则:       ①与结构重要性及破坏后修复的难易程度相适应,主要考虑与公路等级相联系;       ②与采用的稳定性分析方法相匹配;       ③以正常工况控制设计,以非正常工况进行校核设计。(2)边坡安全系数判别标准       对边坡的稳定性分析评价,边坡的稳定性安全系数值参考《公路路基设计规范》(JTG D30-2015)、《建筑边坡工程技术规范》(GB50330-2013)等规范的要求,结合边坡稳定性分析既有经验综合确定。具体确定过程如下:       ①稳定分析的工况、内容       本次边坡稳定性计算考虑以下两种工况:       A.正常工况:边坡处于天然状态下的工况。       B.非正常工况Ⅰ:边坡处于暴雨或连续降雨下的工况。       ②根据《公路路基设计规范》(JTG D30-2015),综合考虑且根据现场的宏观判断,路堑挖方边坡按照正常工况下稳定安全系数大于1.30、非正常工况Ⅰ稳定安全系数大于1.15进行控制。(3)岩土物理力学参数选取3.3边坡稳定性计算(1)清方后稳定性计算       根据计算结果,最不利滑动面为二、三、四级边坡一同整体滑动,稳定系数为0.76,剩余下滑力为625.51kN/m,剩余下滑力倾角为10.11°,二级边坡单级区域稳定系数为0.89,剩余下滑力89.66KN/m,剩余下滑力倾角为8.19°,三级边坡单级区域稳定系数为0.89,剩余下滑力88.90KN/m,剩余下滑力倾角为8.63°,二、三级边坡区域整体稳定系数为0.76,剩余下滑力361.86kN/m,剩余下滑力倾角为11.25°,由于岩体遇水后强度降低很多,暴雨工况下最不利稳定系数更小,因此应对二级、三级边坡均进行预应力锚杆框架梁防护,采用有限元进行校核天然工况,计算结果为稳定系数Fs=0.79,相较极限平衡法稍大,基本一致,满足要求。GEO5和Optum G2对清方后的边坡稳定性计算结果(2)支护后稳定性计算       根据《公路路基设计规范》(JTG D30-2015)及稳定性试算综合确定预应力锚杆设计锚固力不小于500kN/m,结合潜在滑动面深度和抗拉抗拔计算,二、三级坡预应力锚杆自由段长度取13m,锚固段长度取6m。       经计算,加固后高边坡正常工况下稳定系数为1.37>1.30,暴雨工况下稳定系数为1.22>1.15,满足设计要求。加固后天然工况计算结果加固后暴雨工况计算结果4总结        本项目是路堑边坡开挖过程中因变形而进行的高边坡治理设计。一级坡维持原设计1:1坡率,对坡顶开挖宽平台后做10cm混凝土硬化,搭配平台排水沟,对一级坡采用厚层基材喷射植被防护,由于平台宽9.0m且平台硬化,上部边坡与一级边坡互不影响,暴雨期雨水无法进入边坡后缘,稳定性高,方案优势明显,清坡后二级坡与三级坡坡率为1:1,并施打预应力锚杆框架梁,起到固脚强腰作用,由于岩质边坡较为破碎,采用压力分散型锚杆。顶部粉质粘土层设计坡率为1:1.25,采用人字形骨架植草防护。       经反分析计算,得到变形体在天然工况及连续暴雨工况下的物理力学参数,支护加固前天然工况下稳定系数为0.76,设置预应力锚杆框架梁后天然工况下稳定系数为1.37>1.30,暴雨工况下稳定系数为1.22>1.15,满足设计要求。 查看全部
<p><strong>1 项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 本项目地处海南省中部山区,是进一步巩固新时代脱贫攻坚、全面建成小康社会成果的生态+景观路规范,旅游+交通路,幸福+致富路,采用双向四车道高速公路标准,设计速度80公里/小时,路基宽度25.5米,设计荷载为公路-I级。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 本项目此段深挖方高边坡位于K14+500-K14+600右侧,最高高度为28.13m,地层岩性自上而下为粉质粘土、强风化砂岩碎石及全-中风化砂岩,下部一级边坡中风化砂岩整体性较好,中部二级边坡岩层较为破碎,刷坡后外露表面为全风化泥质砂岩,手掰即碎,产状倾角接近水平,处于8°~11°之间,为顺倾,表层以下约1m左右为强风化砂岩,无明显层理,上部为粉质粘土及全风化砂岩,高边坡坡形为一级边坡坡率为1:1.0,二级及以上边坡坡率为1:1.25,分级坡高为8m,平台宽2m。目前边坡开挖至二级边坡坡脚处,三级边坡已施作人字形骨架,经过约5-6天的连续暴雨期,此段高边坡二级边坡发生了开裂变形,裂缝宽约1.0~1.5m,从二级边坡坡顶(三级边坡坡脚)开裂,坡顶及二级坡坡体两侧出现了典型的拉张裂缝和剪切裂缝,前缘有较为明显的挤压变形,并因变形受阻形成了顺滑动方向的扇形压张裂缝,大致平行与变形方向,两侧呈放射状分布,在持续暴雨作用下有发生进一步滑动破坏的可能。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724308092900167.png" alt="image.png"/></p><p style="text-align: center;">高边坡现状情况</p><p><strong>2 高边坡变形原因定性分析</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;目前此高边坡的二级边坡拉张裂缝及剪切裂缝已形成,并在前缘发现了扇形压张裂缝,剪切裂缝未完全贯通,根据现状估计,再经过1-2场同等强度的持续降雨可发生滑动破坏,综合分析,边坡变形受多方面因素影响。</p><p>(1)降雨</p><p>&nbsp; &nbsp; &nbsp; &nbsp;高边坡发生变形最主要的外界影响因素是降雨,该地区降雨强度高且降雨次数及持续时间长,根据降雨相关资料收集,平均降雨天数在20天以上,降雨对边坡主要存在以下影响:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(a)软化效应:由于降雨的渗入作用,破碎的边坡岩土体将会被软化。软化作用主要包括对结构面的润滑和对滑带土的软化。地下水和滑带土作用后,能改变滑带土的物理性质,如增加含水率和孔隙比。除此之外,还会发生滑带土溶解作用、水化作用、氧化还原作用、沉淀作用和离子交换等作用。本高边坡滑带土中含有大量粘土矿物,离子交换作用能改变这些矿物的含量。溶解作用能使滑带土内产生溶蚀裂隙、空隙及孔洞等现象。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(b)力学作用:水流在边坡体上流动时,会对边坡表面产生冲刷力,降雨会通过滑坡体已有的入渗通道(张拉裂缝、空洞等)下渗至滑体内部,使得滑带土和部分土体处于饱和状态,岩土体抗剪强度降低,由于岩层破碎节理裂隙发育,强降雨作用后逐渐形成贯通的裂隙带,沿裂隙带发生变形破坏。</p><p>(2)排水不及时</p><p>&nbsp; &nbsp; &nbsp; &nbsp;虽施工刷坡防护较为及时,但由于降雨期持续时间长,降雨强度大导致坡脚仍有大量积水未及时排出,加之二级边坡坡顶平台正在施工平台排水沟中还未贯通,导致上部坡面汇水直接进入岩层节理裂隙,这也是导致高边坡产生急剧变形的原因。</p><p>(3)岩土体性质</p><p>&nbsp; &nbsp; &nbsp; &nbsp;坡面岩土体本身较为破碎,节理裂隙多,松散的岩土体结构为后期降雨进入地下提供了有利的入渗通道,岩土体在地下水作用下进一步崩解、软化和泥化,从而形成潜在滑面。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724308176981671.png" alt="image.png" width="330" height="446" style="width: 330px; height: 446px;"/></p><p style="text-align: center;">边坡后缘出现的拉张裂缝</p><p><strong>3 边坡支护设计及稳定性计算</strong></p><p>3.1支护方案设计</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 经方案比选后,选择如下设计方案。首先清除变形区域的坡体,保证高边坡段不存在不稳定岩土体,然后可根据高边坡各级坡的岩土体性质对其采用合适的坡率+锚杆(索)支护的方案,坡率由稳定性计算确定,一级边坡维持原设计1:1坡率,对坡顶开挖宽平台后做10cm混凝土硬化,搭配平台排水沟,对一级坡采用厚层基材喷射植被防护,由于平台宽9.0m且平台硬化,上部边坡与一级边坡互不影响,暴雨期雨水无法进入边坡后缘,稳定性高,方案优势明显,清坡后二级坡与三级坡坡率为1:1,并施打预应力锚杆框架梁,起到固脚强腰作用(根据稳定性分析结果视潜在滑动面深度及岩土层情况也可选择锚杆框架梁),由于岩质边坡较为破碎,采用压力分散型锚杆,不仅工作时锚固段灌浆体剪应力较均匀,可有效抑制锚杆的蠕变,而且锚杆全长采用无粘结钢绞线,锚杆工作时灌浆体处于受压状态,因而具有良好的防腐性能,是目前在软弱破碎岩体和土体锚固工程中大力推广使用的锚杆。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724308229263671.png" alt="image.png"/></p><p>3.2边坡稳定性分析流程</p><p>(1)分析工况</p><p>&nbsp; &nbsp; &nbsp; &nbsp;边坡稳定性分析工况根据项目特点及边坡基本特征,共分为2组计算工况。天然工况下的稳定性,考虑天然自重+地下水位的组合,无地下水时考虑天然自重情况下的稳定性。暴雨工况下的稳定性及地震工况下的稳定性,根据路基规范3.6.11条条文说明要求作为校核工况,对暴雨工况下边坡采用地勘报告提供的饱和抗剪强度进行计算。其中路基安全系数取值遵循以下原则:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①与结构重要性及破坏后修复的难易程度相适应,主要考虑与公路等级相联系;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②与采用的稳定性分析方法相匹配;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;③以正常工况控制设计,以非正常工况进行校核设计。</p><p>(2)边坡安全系数判别标准</p><p>&nbsp; &nbsp; &nbsp; &nbsp;对边坡的稳定性分析评价,边坡的稳定性安全系数值参考《公路路基设计规范》(JTG D30-2015)、《建筑边坡工程技术规范》(GB50330-2013)等规范的要求,结合边坡稳定性分析既有经验综合确定。具体确定过程如下:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①稳定分析的工况、内容</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次边坡稳定性计算考虑以下两种工况:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;A.正常工况:边坡处于天然状态下的工况。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;B.非正常工况Ⅰ:边坡处于暴雨或连续降雨下的工况。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②根据《公路路基设计规范》(JTG D30-2015),综合考虑且根据现场的宏观判断,路堑挖方边坡按照正常工况下稳定安全系数大于1.30、非正常工况Ⅰ稳定安全系数大于1.15进行控制。</p><p>(3)岩土物理力学参数选取</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724308334751812.png" alt="image.png" width="447" height="245" style="width: 447px; height: 245px;"/></p><p>3.3边坡稳定性计算</p><p>(1)清方后稳定性计算</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据计算结果,最不利滑动面为二、三、四级边坡一同整体滑动,稳定系数为0.76,剩余下滑力为625.51kN/m,剩余下滑力倾角为10.11°,二级边坡单级区域稳定系数为0.89,剩余下滑力89.66KN/m,剩余下滑力倾角为8.19°,三级边坡单级区域稳定系数为0.89,剩余下滑力88.90KN/m,剩余下滑力倾角为8.63°,二、三级边坡区域整体稳定系数为0.76,剩余下滑力361.86kN/m,剩余下滑力倾角为11.25°,由于岩体遇水后强度降低很多,暴雨工况下最不利稳定系数更小,因此应对二级、三级边坡均进行预应力锚杆框架梁防护,采用有限元进行校核天然工况,计算结果为稳定系数Fs=0.79,相较极限平衡法稍大,基本一致,满足要求。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724308528137107.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724308541583105.png" alt="image.png"/></p><p style="text-align: center;">GEO5和Optum G2对清方后的边坡稳定性计算结果</p><p>(2)支护后稳定性计算</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据《公路路基设计规范》(JTG D30-2015)及稳定性试算综合确定预应力锚杆设计锚固力不小于500kN/m,结合潜在滑动面深度和抗拉抗拔计算,二、三级坡预应力锚杆自由段长度取13m,锚固段长度取6m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;经计算,加固后高边坡正常工况下稳定系数为1.37>1.30,暴雨工况下稳定系数为1.22>1.15,满足设计要求。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724308582276446.png" alt="image.png"/></p><p style="text-align: center;">加固后天然工况计算结果</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724308601474414.png" alt="image.png"/></p><p style="text-align: center;">加固后暴雨工况计算结果</p><p><strong>4总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 本项目是路堑边坡开挖过程中因变形而进行的高边坡治理设计。一级坡维持原设计1:1坡率,对坡顶开挖宽平台后做10cm混凝土硬化,搭配平台排水沟,对一级坡采用厚层基材喷射植被防护,由于平台宽9.0m且平台硬化,上部边坡与一级边坡互不影响,暴雨期雨水无法进入边坡后缘,稳定性高,方案优势明显,清坡后二级坡与三级坡坡率为1:1,并施打预应力锚杆框架梁,起到固脚强腰作用,由于岩质边坡较为破碎,采用压力分散型锚杆。顶部粉质粘土层设计坡率为1:1.25,采用人字形骨架植草防护。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;经反分析计算,得到变形体在天然工况及连续暴雨工况下的物理力学参数,支护加固前天然工况下稳定系数为0.76,设置预应力锚杆框架梁后天然工况下稳定系数为1.37>1.30,暴雨工况下稳定系数为1.22>1.15,满足设计要求。</p>

GEO5某厂房地基固结沉降分析

库仑产品南京库仑张工 发表了文章 • 0 个评论 • 746 次浏览 • 2024-08-22 14:26 • 来自相关话题

使用模块:GEO5地基固结沉降分析1 工程地质条件       根据补充勘察资料,本项目地层总共分4个地层,从上往下分别为填土、淤泥质粉质黏土、粉质黏土层、强~中风化石灰岩。分层描述如下:       ①层混凝土层(Q4ml):灰、以混凝土为主,内含钢筋。       ②层填土(Q4ml):杂色、灰褐色,湿。主要成分以可塑状粉质黏土为主,局部含有少量碎石,该层有大量水泥浆分布。       ③层淤泥质粉质黏土(Q4al+pl):青灰色,饱和,软塑状态,局部有粉砂夹层,含贝壳残积物,该层局部含水泥浆。       ③1层粉质黏土(Q4al+pl):青灰色,湿,可塑~硬可塑状态,含有粉土及粉砂,自上而上递增。       ④1 层强风化石灰岩(∈):灰白色、灰褐色,泥晶结构,岩芯呈碎块状、砂砾及碎屑状,含方解石,岩体破碎~较破碎,该层有多个小溶洞,由粘性土充填,裂隙多,溶蚀现象严重。       ④2 层中风化石灰岩(∈):灰白色、灰褐色,泥晶~微晶结构,中厚~厚层构造,岩芯多呈短柱状及饼状,局部为碎块状,沿层面断开。属下伏基岩层,分布于整个场地。2 边界条件       本项目沉降计算主要包括填土层的压缩沉降、淤泥质粉质黏土的压缩固结沉降和粉质黏土层的压缩沉降。因地区基岩埋深为15~17m,上部设计荷载为120kN/m,附加荷载可传递至基岩层顶以上所有土层。因此基岩层以上所有土层均需考虑压缩沉降。结合项目的设计荷载,地坪的附加荷载按120kpa均布荷载考虑。因场坪上存在50cm的水泥混凝土层,且混凝土层与管桩顶相连。考虑管桩对水泥混凝土层存在一定支撑作用,所以本次计算不考虑混凝土层附加荷载。根据原设计,水泥混凝土场坪底部换填1.5m的砂石土,本次计算予以考虑。3 参数选取及建模分析       本次计算采用GEO5 地基固结沉降分析模块,依据钻孔进行地层建模。加固前参数选取       经计算,未加固前土层0-6月预压期沉降为38.03cm,6月到10年的沉降为56.23cm,工后沉降为23.71cm,计算结果及固结曲线如下:未加固前计算结果和固结曲线       依据项目的加固方案,对场坪区采用压密注浆加固,单孔有效加固直径为50cm,间距为1.0~1.5m,计算按最不利情况1.5m考虑,桩按梅花形布孔,加密注浆深度为10m。考虑注浆加固对填土层效果较好,淤泥质粉质黏土层效果一般。因此本项目可靠的加固深度为6m,6-10m范围的加固效果一般,在后期加固参数选取中体现。加固后参数选取       经计算,加固后土层10年的总沉降为40.88cm,工后沉降为10.21cm,计算结果如下:各阶段固结度和沉降值表加固后的计算结果4 总结       本次项目主要是计算某厂房地基天然和加固后的固结及沉降情况。采用GEO5固结沉降分析模块,建模快捷,可以根据需要设置计算断面,最新版本还可以进行竖向排水砂井的设置。 查看全部
<p>使用模块:GEO5地基固结沉降分析</p><p><strong>1 工程地质条件</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据补充勘察资料,本项目地层总共分4个地层,从上往下分别为填土、淤泥质粉质黏土、粉质黏土层、强~中风化石灰岩。分层描述如下:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①层混凝土层(Q<sub>4</sub><sup>ml</sup>):灰、以混凝土为主,内含钢筋。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②层填土(Q<sub>4</sub><sup>ml</sup>):杂色、灰褐色,湿。主要成分以可塑状粉质黏土为主,局部含有少量碎石,该层有大量水泥浆分布。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;③层淤泥质粉质黏土(Q<sub>4</sub><sup>al+pl</sup>):青灰色,饱和,软塑状态,局部有粉砂夹层,含贝壳残积物,该层局部含水泥浆。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;③<sub>1</sub>层粉质黏土(Q<sub>4</sub><sup>al+pl</sup>):青灰色,湿,可塑~硬可塑状态,含有粉土及粉砂,自上而上递增。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;④<sub>1</sub> 层强风化石灰岩(∈):灰白色、灰褐色,泥晶结构,岩芯呈碎块状、砂砾及碎屑状,含方解石,岩体破碎~较破碎,该层有多个小溶洞,由粘性土充填,裂隙多,溶蚀现象严重。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;④<sub>2</sub> 层中风化石灰岩(∈):灰白色、灰褐色,泥晶~微晶结构,中厚~厚层构造,岩芯多呈短柱状及饼状,局部为碎块状,沿层面断开。属下伏基岩层,分布于整个场地。</p><p><strong>2 边界条件</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本项目沉降计算主要包括填土层的压缩沉降、淤泥质粉质黏土的压缩固结沉降和粉质黏土层的压缩沉降。因地区基岩埋深为15~17m,上部设计荷载为120kN/m,附加荷载可传递至基岩层顶以上所有土层。因此基岩层以上所有土层均需考虑压缩沉降。结合项目的设计荷载,地坪的附加荷载按120kpa均布荷载考虑。因场坪上存在50cm的水泥混凝土层,且混凝土层与管桩顶相连。考虑管桩对水泥混凝土层存在一定支撑作用,所以本次计算不考虑混凝土层附加荷载。根据原设计,水泥混凝土场坪底部换填1.5m的砂石土,本次计算予以考虑。</p><p><strong>3 参数选取及建模分析</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次计算采用GEO5 地基固结沉降分析模块,依据钻孔进行地层建模。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307685651955.png" alt="image.png"/></p><p>加固前参数选取</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307653914933.png" alt="image.png" width="480" height="227" style="width: 480px; height: 227px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;经计算,未加固前土层0-6月预压期沉降为38.03cm,6月到10年的沉降为56.23cm,工后沉降为23.71cm,计算结果及固结曲线如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307729273270.png" alt="image.png"/></p><p style="text-align: center;">未加固前计算结果和固结曲线</p><p>&nbsp; &nbsp; &nbsp; &nbsp;依据项目的加固方案,对场坪区采用压密注浆加固,单孔有效加固直径为50cm,间距为1.0~1.5m,计算按最不利情况1.5m考虑,桩按梅花形布孔,加密注浆深度为10m。考虑注浆加固对填土层效果较好,淤泥质粉质黏土层效果一般。因此本项目可靠的加固深度为6m,6-10m范围的加固效果一般,在后期加固参数选取中体现。</p><p>加固后参数选取</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307769752421.png" alt="image.png" width="462" height="254" style="width: 462px; height: 254px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;经计算,加固后土层10年的总沉降为40.88cm,工后沉降为10.21cm,计算结果如下:</p><p style="text-align: center;">各阶段固结度和沉降值表</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307815395530.png" alt="image.png" width="386" height="267" style="width: 386px; height: 267px;"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307836682913.png" alt="image.png"/></p><p style="text-align: center;">加固后的计算结果</p><p><strong>4 总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次项目主要是计算某厂房地基天然和加固后的固结及沉降情况。采用GEO5固结沉降分析模块,建模快捷,可以根据需要设置计算断面,最新版本还可以进行竖向排水砂井的设置。</p>

GEO5某矿渣边坡支护设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 792 次浏览 • 2024-08-22 14:18 • 来自相关话题

1 项目背景       某矿区地下水污染综合防治工程受甲方委托在矿区勘查工作和收集周边工程建设勘查资料的基础上,遵循地质灾害防治的基本原则,对矿区矿渣堆整形、矿渣堆及堆体两侧坡面护坡、拦渣坝、截排水沟、不稳定边坡支护、危岩清除等防治工程从安全有效性、技术可行性、经济合理性进行论证,提出具有针对性、系统性的最优综合防治工程方案。2 工程地质条件       针对矿区矿渣堆边坡开展调勘查,共划分8个不稳定斜坡,分别进行坡面稳定性分析评价,通过钻探取样及现场大重度试验及现场2处已经滑移边坡坡面反演综合确定不稳定斜坡物质组成成分为:       ①素填土(角砾为主):分布于矿区坡面中下部,参数取值天然状态:重度=19.0kN/m3,C=6.0kPa,φ=28.00°,饱和状态:重度=19.6kN/m3,C=0.5kPa,φ=21.00°;       ②素填土(碎石为主):分布于矿区坡面上部,参数取值天然状态:重度=19.2kN/m3,C=2.0kPa,φ=31.00°,饱和状态:重度=19.8kN/m3,C=1.2kPa,φ=27.00°;       ③强风化片岩:分布于矿渣堆下部,厚2-8m,天然单轴抗压强度14MPa,饱和单轴抗压强度10.4MPa;       ④中风化片岩:分布于强风化基岩下,分布于3-10m以下,天然单轴抗压强度32.62MPa,饱和单轴抗压强度16.54MPa;       其岩土体的渗透系数通过钻孔压水试验及现场双环实验确定①层素填土地表矿渣渗透系数值0.14~0.22cm/s,平均值K=0.18cm/s,为强透水性;①层素填土地表覆土渗透系数值2.75×10-5~4.90×10-5cm/s,平均值K=3.83×10-5m/d,为弱透水性;③-1强风化片岩渗透系数值1.29×10-3~7.02×10-3cm/s,平均值K=4.24×10-3cm/s(约72Lu),为中等透水性;③-2中风化渗透系数值2.29~9.38×10-5cm/s,平均值5.44×10-5(约4.6Lu),为弱透水性。       综合调勘查结果及周边1:5000水文地质调查成果,地下水均为大气降雨补给,主要以矿渣堆素填土及坡面表层粉质粘土的孔隙潜水存在,局部受地形切割出露为下降泉径流;下部基岩裂隙水弱含水性,径流较近,因此综合地下水污染防治效果,本次主要采取对矿渣堆整形加封闭矿渣堆减少降雨入渗为主的方法治理。3 斜坡稳定性计算及支护设计       根据不稳定斜坡变形现状,及区内水文地形等特点,分别对不稳定斜坡天然、地震和暴雨工况进行计算。1号不稳定斜坡天然工况计算1号不稳定斜坡地震工况计算1号不稳定斜坡暴雨工况计算       对所有8个不稳定斜坡均进行计算后,所有斜坡均处于基本稳定到欠稳定状态,需要进行支护设计。       本次堆积矿渣高度在5m-15m,且矿渣堆主要为强风化片岩,使用加筋土挡墙工程可以有效利用矿渣,且较为经济。加筋土挡墙可以分级台阶做坡度,在面层开展防渗措施。因此本次支护方案采用加筋土挡墙设计。       考虑到加筋土墙的土工格栅的蠕变、耐久、安装等损失,最终加筋土墙采用双向聚酯(PET)的土工格栅的材料,防腐等级在2-13,它的质控出厂抗拉强度可达400kN/m。加筋土挡墙设计加筋后整体稳定性分析4 总结       本次项目主要是基于地下水污染防治防渗目的开展的边坡整形消纳支挡工程设计,主要基于前期调查,确定污染来源主要为大气降水淋滤矿渣造成的水污染,未发现有深层基岩泉水出露的条件下,开展边坡稳定性分析,在此基础上进行加筋土挡墙设计。       GEO5边坡稳定系分析模块可以一个文件分析多种工况问题,减少重复建模操作,加筋土挡墙设计模块支持多级台阶设置,对本设计方案提供了计算支撑。 查看全部
<p><strong>1 项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;某矿区地下水污染综合防治工程受甲方委托在矿区勘查工作和收集周边工程建设勘查资料的基础上,遵循地质灾害防治的基本原则,对矿区矿渣堆整形、矿渣堆及堆体两侧坡面护坡、拦渣坝、截排水沟、不稳定边坡支护、危岩清除等防治工程从安全有效性、技术可行性、经济合理性进行论证,提出具有针对性、系统性的最优综合防治工程方案。</p><p><strong>2 工程地质条件</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;针对矿区矿渣堆边坡开展调勘查,共划分8个不稳定斜坡,分别进行坡面稳定性分析评价,通过钻探取样及现场大重度试验及现场2处已经滑移边坡坡面反演综合确定不稳定斜坡物质组成成分为:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①素填土(角砾为主):分布于矿区坡面中下部,参数取值天然状态:重度=19.0kN/m3,C=6.0kPa,φ=28.00°,饱和状态:重度=19.6kN/m3,C=0.5kPa,φ=21.00°;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②素填土(碎石为主):分布于矿区坡面上部,参数取值天然状态:重度=19.2kN/m3,C=2.0kPa,φ=31.00°,饱和状态:重度=19.8kN/m3,C=1.2kPa,φ=27.00°;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;③强风化片岩:分布于矿渣堆下部,厚2-8m,天然单轴抗压强度14MPa,饱和单轴抗压强度10.4MPa;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;④中风化片岩:分布于强风化基岩下,分布于3-10m以下,天然单轴抗压强度32.62MPa,饱和单轴抗压强度16.54MPa;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;其岩土体的渗透系数通过钻孔压水试验及现场双环实验确定①层素填土地表矿渣渗透系数值0.14~0.22cm/s,平均值K=0.18cm/s,为强透水性;①层素填土地表覆土渗透系数值2.75×10-5~4.90×10-5cm/s,平均值K=3.83×10-5m/d,为弱透水性;③-1强风化片岩渗透系数值1.29×10-3~7.02×10-3cm/s,平均值K=4.24×10-3cm/s(约72Lu),为中等透水性;③-2中风化渗透系数值2.29~9.38×10-5cm/s,平均值5.44×10-5(约4.6Lu),为弱透水性。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;综合调勘查结果及周边1:5000水文地质调查成果,地下水均为大气降雨补给,主要以矿渣堆素填土及坡面表层粉质粘土的孔隙潜水存在,局部受地形切割出露为下降泉径流;下部基岩裂隙水弱含水性,径流较近,因此综合地下水污染防治效果,本次主要采取对矿渣堆整形加封闭矿渣堆减少降雨入渗为主的方法治理。</p><p><strong>3 斜坡稳定性计算及支护设计</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据不稳定斜坡变形现状,及区内水文地形等特点,分别对不稳定斜坡天然、地震和暴雨工况进行计算。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307340709472.png" alt="image.png"/></p><p style="text-align: center;">1号不稳定斜坡天然工况计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307363530498.png" alt="image.png"/></p><p style="text-align: center;">1号不稳定斜坡地震工况计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307383469712.png" alt="image.png"/></p><p style="text-align: center;">1号不稳定斜坡暴雨工况计算</p><p>&nbsp; &nbsp; &nbsp; &nbsp;对所有8个不稳定斜坡均进行计算后,所有斜坡均处于基本稳定到欠稳定状态,需要进行支护设计。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次堆积矿渣高度在5m-15m,且矿渣堆主要为强风化片岩,使用加筋土挡墙工程可以有效利用矿渣,且较为经济。加筋土挡墙可以分级台阶做坡度,在面层开展防渗措施。因此本次支护方案采用加筋土挡墙设计。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;考虑到加筋土墙的土工格栅的蠕变、耐久、安装等损失,最终加筋土墙采用双向聚酯(PET)的土工格栅的材料,防腐等级在2-13,它的质控出厂抗拉强度可达400kN/m。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307433901610.png" alt="image.png"/></p><p style="text-align: center;">加筋土挡墙设计</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307454719014.png" alt="image.png"/></p><p style="text-align: center;">加筋后整体稳定性分析</p><p><strong>4 总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次项目主要是基于地下水污染防治防渗目的开展的边坡整形消纳支挡工程设计,主要基于前期调查,确定污染来源主要为大气降水淋滤矿渣造成的水污染,未发现有深层基岩泉水出露的条件下,开展边坡稳定性分析,在此基础上进行加筋土挡墙设计。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;GEO5边坡稳定系分析模块可以一个文件分析多种工况问题,减少重复建模操作,加筋土挡墙设计模块支持多级台阶设置,对本设计方案提供了计算支撑。</p>

GEO5某滑雪小镇高陡填土边坡及抗滑桩工程设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 821 次浏览 • 2024-08-22 10:41 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、抗滑桩设计1 项目背景       某滑雪场坐落于“中国滑雪之乡”吉林省通化市,海拔约980米,依山傍水而建的16公里登山步道连接某国家森林公园景区,山体落差约568米。区域年冰雪期逾150天,平均积雪厚度可达一米左右,雪质优良,可同时容纳1000人滑雪。       本次新建滑雪场度假区滑雪小镇位于滑雪场东侧临近的山坡地段,项目整体包括7栋公寓、别墅区、造雪机房和车库等。其中C4座位于项目东南侧山坡,按项目规划,在紧邻C4座东侧需要大量填土,预计新填土及原地表填土合计高度超过15米,而边坡东侧下部临近河道边坡,填土后整体形成了一个大型的高陡边坡,是该项目边坡工程中最危险的部分。项目整体及C4座周边填土边坡情况如下图所示。项目场地周边效果图2 工程地质条件       拟建场区地貌单元为坡积地貌,地势变化较大。孔口高程最大值为454.90m,最小值为416.09m,最大高差38.81m。       勘察深度内,场区地下水属第四系潜水,初见水位埋深自然地面以下1.70~4.40m,稳定水位埋深自然地面以下1.50~4.20m,稳定水位标高为411.89~449.22m,勘察区内地形为山坡,地表水不发育,地下水补给来源主要为大气降雨和雪水融化,降水量比较充沛。山区覆盖层比较薄,有利于降水渗入补给。       由于地势较高,汇水面积小,地形坡度较大,覆盖层不厚,因此地表水径流条件良好,并在短时间内,由沟谷泄走。        地层岩性由上至下分10层,表层土为第四系素填土、粉质粘土含角砾、粗砂、圆砾、卵石,下伏基岩为:老岭群珍珠门组大理岩,根据勘察区岩体露头产状,倾向135°,倾角63°。现分层描述如下:       第①层 素填土:暗黄色、黑色,湿,松散,主要由碎石、粘性土等回填,该层在场区内分布不连续,层厚0.40~3.00m。       第②层 腐殖土:黑色,湿,松散,该层在场区部分地段见到,层厚0.30~1.90m。       第③层 粉质粘土含角砾:暗黄色,湿~饱和,可塑,角砾含量20%左右,该层在场区内部分地段缺失,层厚0.40~3.40m。       第④层 粗砂:暗黄色,湿,稍密,粒径大于0.5mm的颗粒质量超过总质量的50%以上,颗分级配好,分选性差,该层在场区内部分地段见到,层厚0.80~2.10m。       第⑤层 角砾:暗黄色,湿~饱和,稍密,粒径大于2mm的颗粒质量占总质量的50%以上,呈棱角状,一般粒径2~5mm,最大粒径10mm,由粘性土充填,该层在场区内分布不连续,层厚1.60~2.70m。       第⑥层 碎石:暗黄色,湿,稍密,粒径大于20mm的颗粒质量占总质量的50%以上,呈棱角状,一般粒径20~50mm,最大粒径70mm,由粘性土充填,该层在场区内部分地段见到,层厚0.50~3.10m。       第⑦层 卵石:暗黄色,湿~饱和,稍密,粒径大于20mm的颗粒占总质量的50%以上,呈亚圆状,一般粒径20~60mm,最大粒径120mm,由砂类土充填,该层在场区内分布不连续,层厚0.30~4.60m。       第⑧层 大理岩:全风化,灰白色,经风化作用,结构被破坏,见原岩成份,该层在场区内分布不连续,层厚0.40~0.90m。       第⑨层 大理岩:强风化,灰白色,隐晶质变晶结构,块状构造,为较软岩,较破碎,岩芯呈碎块状,岩体基本质量等级为Ⅳ级,层厚0.20~2.10m。       第⑩层 大理岩:中风化,灰白色,隐晶质变晶结构,块状构造,为较软岩,较完整,岩芯呈短柱状及块状,岩体基本质量等级为Ⅳ级,层厚5.00~20.40m。场地7-7工程地质剖面图3 支挡结构设计3.1设计参数       (1)X1-X2-X3-X4剖面:采用直径1200mm抗滑桩,间距2.4m,桩长18m, 桩端进入中风化大理岩不小于4m,兼做上部悬臂式挡土墙的桩基础,悬臂式挡土墙高3m;       (2)Y1-Y2-Y3-Y4-Y5剖面:采用直径1400mm抗滑桩,间距2.4m,桩长11m, 桩端进入中风化大理岩不小于4m,兼做上部扶壁式挡土墙的桩基础,扶壁式挡土墙高5m;       (3)支护桩及悬臂式、扶壁式挡土墙采用C30混凝土,主筋采用HRB400级钢筋,箍筋可采用HPB335级钢筋;主筋外侧混凝土保护层厚度50mm;       (4)锚索采用3-7∅5(∅=15.2)钢绞线为筋体,成孔直径不小于150mm,注浆材料为素水泥浆,水灰比0.8:1,水泥采用42.5级普通硅酸盐水泥,应按规范要求保证锚索施工质量;       (5)锚索承载力标准值Nk=150kPa,预拉力为Nk的140%,持荷5分钟后锁定,锁定力为Nk的85%;       (6)填土要求:上部填土必须分层夯实,分层厚度不大于400mm,压实系数不小于0.95,并严格按照图中尺寸进行填筑,严禁超挖超填;回填材料为砂类土或黏土混以碎石,严禁使用软黏土、膨胀性土、淤泥质土、耕植土或冻土作为回填土;       (7)上部挡墙后地面横坡坡度大于1:6时,应在进行地面粗糙后再填土;       (8)锚索及锚头的防腐处应符合《建筑边坡工程技术规范》GB50330-2013永久性锚杆的防腐蚀处理的规定。典型设计剖面3.2计算分析成果(1)天然工况计算(2)地震工况计算4 总结       本项目整体建于山体边坡上,涉及各种边坡形式较多,也采取了不同的支护手段,采用库仑GEO5岩土分析软件,可以实现多工况在一个文件当中进行计算,方便快捷,计算成果为设计提供了支撑。       项目于2021年初进行设计,并陆续施工,至2022年完工,当时正处于新冠疫情期间,未能采集到施工过程的影像,后期据业主反映建成后效果很好,且与度假区整体的景观规划较协调。 查看全部
<p>使用模块:GEO5土质边坡稳定性分析、抗滑桩设计</p><p><strong>1 项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;某滑雪场坐落于“中国滑雪之乡”吉林省通化市,海拔约980米,依山傍水而建的16公里登山步道连接某国家森林公园景区,山体落差约568米。区域年冰雪期逾150天,平均积雪厚度可达一米左右,雪质优良,可同时容纳1000人滑雪。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次新建滑雪场度假区滑雪小镇位于滑雪场东侧临近的山坡地段,项目整体包括7栋公寓、别墅区、造雪机房和车库等。其中C4座位于项目东南侧山坡,按项目规划,在紧邻C4座东侧需要大量填土,预计新填土及原地表填土合计高度超过15米,而边坡东侧下部临近河道边坡,填土后整体形成了一个大型的高陡边坡,是该项目边坡工程中最危险的部分。项目整体及C4座周边填土边坡情况如下图所示。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294173959878.png" alt="image.png"/></p><p style="text-align: center;">项目场地周边效果图</p><p><strong>2 工程地质条件</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;拟建场区地貌单元为坡积地貌,地势变化较大。孔口高程最大值为454.90m,最小值为416.09m,最大高差38.81m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;勘察深度内,场区地下水属第四系潜水,初见水位埋深自然地面以下1.70~4.40m,稳定水位埋深自然地面以下1.50~4.20m,稳定水位标高为411.89~449.22m,勘察区内地形为山坡,地表水不发育,地下水补给来源主要为大气降雨和雪水融化,降水量比较充沛。山区覆盖层比较薄,有利于降水渗入补给。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;由于地势较高,汇水面积小,地形坡度较大,覆盖层不厚,因此地表水径流条件良好,并在短时间内,由沟谷泄走。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 地层岩性由上至下分10层,表层土为第四系素填土、粉质粘土含角砾、粗砂、圆砾、卵石,下伏基岩为:老岭群珍珠门组大理岩,根据勘察区岩体露头产状,倾向135°,倾角63°。现分层描述如下:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第①层 素填土:暗黄色、黑色,湿,松散,主要由碎石、粘性土等回填,该层在场区内分布不连续,层厚0.40~3.00m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第②层 腐殖土:黑色,湿,松散,该层在场区部分地段见到,层厚0.30~1.90m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第③层 粉质粘土含角砾:暗黄色,湿~饱和,可塑,角砾含量20%左右,该层在场区内部分地段缺失,层厚0.40~3.40m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第④层 粗砂:暗黄色,湿,稍密,粒径大于0.5mm的颗粒质量超过总质量的50%以上,颗分级配好,分选性差,该层在场区内部分地段见到,层厚0.80~2.10m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑤层 角砾:暗黄色,湿~饱和,稍密,粒径大于2mm的颗粒质量占总质量的50%以上,呈棱角状,一般粒径2~5mm,最大粒径10mm,由粘性土充填,该层在场区内分布不连续,层厚1.60~2.70m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑥层 碎石:暗黄色,湿,稍密,粒径大于20mm的颗粒质量占总质量的50%以上,呈棱角状,一般粒径20~50mm,最大粒径70mm,由粘性土充填,该层在场区内部分地段见到,层厚0.50~3.10m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑦层 卵石:暗黄色,湿~饱和,稍密,粒径大于20mm的颗粒占总质量的50%以上,呈亚圆状,一般粒径20~60mm,最大粒径120mm,由砂类土充填,该层在场区内分布不连续,层厚0.30~4.60m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑧层 大理岩:全风化,灰白色,经风化作用,结构被破坏,见原岩成份,该层在场区内分布不连续,层厚0.40~0.90m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑨层 大理岩:强风化,灰白色,隐晶质变晶结构,块状构造,为较软岩,较破碎,岩芯呈碎块状,岩体基本质量等级为Ⅳ级,层厚0.20~2.10m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑩层 大理岩:中风化,灰白色,隐晶质变晶结构,块状构造,为较软岩,较完整,岩芯呈短柱状及块状,岩体基本质量等级为Ⅳ级,层厚5.00~20.40m。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294258606780.png" alt="image.png"/></p><p style="text-align: center;">场地7-7工程地质剖面图</p><p><strong>3 支挡结构设计</strong></p><p>3.1设计参数</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(1)X1-X2-X3-X4剖面:采用直径1200mm抗滑桩,间距2.4m,桩长18m, 桩端进入中风化大理岩不小于4m,兼做上部悬臂式挡土墙的桩基础,悬臂式挡土墙高3m;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(2)Y1-Y2-Y3-Y4-Y5剖面:采用直径1400mm抗滑桩,间距2.4m,桩长11m, 桩端进入中风化大理岩不小于4m,兼做上部扶壁式挡土墙的桩基础,扶壁式挡土墙高5m;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(3)支护桩及悬臂式、扶壁式挡土墙采用C30混凝土,主筋采用HRB400级钢筋,箍筋可采用HPB335级钢筋;主筋外侧混凝土保护层厚度50mm;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(4)锚索采用3-7∅5(∅=15.2)钢绞线为筋体,成孔直径不小于150mm,注浆材料为素水泥浆,水灰比0.8:1,水泥采用42.5级普通硅酸盐水泥,应按规范要求保证锚索施工质量;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(5)锚索承载力标准值Nk=150kPa,预拉力为Nk的140%,持荷5分钟后锁定,锁定力为Nk的85%;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(6)填土要求:上部填土必须分层夯实,分层厚度不大于400mm,压实系数不小于0.95,并严格按照图中尺寸进行填筑,严禁超挖超填;回填材料为砂类土或黏土混以碎石,严禁使用软黏土、膨胀性土、淤泥质土、耕植土或冻土作为回填土;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(7)上部挡墙后地面横坡坡度大于1:6时,应在进行地面粗糙后再填土;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(8)锚索及锚头的防腐处应符合《建筑边坡工程技术规范》GB50330-2013永久性锚杆的防腐蚀处理的规定。</p><p style="text-align: center;"><strong><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294336596049.png" alt="image.png"/></strong></p><p style="text-align: center;">典型设计剖面</p><p>3.2计算分析成果</p><p>(1)天然工况计算</p><p style="text-align: center;"><strong><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294366973070.png" alt="image.png"/></strong><br/></p><p style="text-align: center;"><strong><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294379804812.png" alt="image.png"/></strong></p><p>(2)地震工况计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294399993421.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294414892184.png" alt="image.png"/></p><p><strong>4 总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本项目整体建于山体边坡上,涉及各种边坡形式较多,也采取了不同的支护手段,采用库仑GEO5岩土分析软件,可以实现多工况在一个文件当中进行计算,方便快捷,计算成果为设计提供了支撑。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;项目于2021年初进行设计,并陆续施工,至2022年完工,当时正处于新冠疫情期间,未能采集到施工过程的影像,后期据业主反映建成后效果很好,且与度假区整体的景观规划较协调。</p>

GEO5某水库管理营地边坡支护结构设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 758 次浏览 • 2024-08-22 10:34 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、抗滑桩设计、扶壁式挡土墙设计、重力式挡土墙设计1 项目背景       某水库位于金沙江左岸某二级支流中上游。水库为III等中型工程,工程任务为农业灌溉,城乡供水等综合利用。水库正常蓄水位1971.0m,设计洪水位1971.02m,校核洪水位1971.48m。水库总库容5113万m3,兴利库容4446万m3。工程由水库枢纽和灌区工程两部分组成,其中:水库枢纽包括大坝(粘土心墙石渣坝)、溢洪道、放空(导流)隧洞、取水隧洞等;灌区工程包括1条干渠和4条支渠。       工程场地库坝区未来50年超越概率10%的基岩水平峰值加速度为0.121g,相应地震烈度为Ⅶ度。       根据《水利水电工程合理使用年限及耐久性设计规范》(SL654-2014)表 3.0.2确定,对综合利用的水利水电工程,工程合理使用年限应按其中最高年限确定。该水库工程等别为Ⅲ等,工程规模为中型,确定工程合理使用年限为50年。       水库配套管理营地工程区位于右岸,场地现状为斜坡地段。场地地面高程为 1993m~2017m,最大高程为 22m,自然边坡坡度为 15°~20°,局部较陡, 最大约 30°。因处于斜坡地带,需对营地周边边坡进行支护结构设计。管理营地区域位置2 工程地质条件       根据工程地质测绘及勘探揭示,场地覆盖层主要为第四系残坡积形成的(Q4el+dl) 含孤块碎石土、含碎砾石粉质黏土,下伏基岩为白垩系下统粉砂质泥岩,各岩土层地质特征自上而下描述如下:(1)第四系残坡积层(Q4el+dl)       ①1 含孤块碎石土:紫红色,主要为孤块石, 原岩为粉砂质泥岩,呈碎块-柱状,碎块大小 2-6cm,柱长 5cm-25cm,含量 60%-70%,中间夹少量粉质黏土。厚度 4.6m~6.5m。       ①2 含碎砾石粉质黏土: 褐色,稍湿~干燥,松散~稍密,可塑状,碎石呈棱角-次棱角状,大小1-5cm,含量约 20%~30%,原岩为粉砂质泥岩。厚度 1.5m~7m。(2) 白垩系下统基岩       ②粉砂质泥岩:紫红色、青灰色,湿,成分以粘土矿物为主,泥质结构,薄层~中厚层状构造。       按其风化程度的不同,粉砂质泥岩可分为以下三个亚层:       ②1 强风化粉砂质泥岩: 强卸荷,岩体强烈卸荷松弛,普遍夹泥, 裂隙发育,遇水易崩解,性软,岩芯呈散体状结构,碎块大小 3cm~30cm。 厚度 1.5m~12m。       ②2 中风化粉砂质泥岩:岩体结构部分破坏,层理较为清晰,性脆,断口不平整,岩芯呈短柱状及柱状,较完整。 厚度 3.2m ~12m。       ②3 微新风化粉砂质泥岩:岩体结构基本未变,仅节理面有少量锈染,有少量风化裂隙,岩芯呈柱状及长柱状,较完整,本次未揭穿。场地岩土体物理力学参数建议值3 边坡支挡结构设计       营地后边坡采用抗滑桩结合逆作法锚拉式重力挡墙工艺,营地前缘边坡采用扶壁式挡墙填方施工,边坡开挖施工应严格按照从上至下刷坡,严禁未刷坡擅自开挖坡脚,采用动态信息化施工方法,做好施工期监测保证施工期安全。3.1边坡安全等级       边坡、挡土墙结构设计工作年限为50年;1#抗滑桩结合挡墙支护的边坡安全等级为以及一级,结构重要性系数为1.1,2#挡墙边坡安全等级为二级,结构重要性系数为1.0,3#挡墙边坡安全等级为一级,结构重要性系数为1.1。       持久工况挡墙抗滑移稳定系数为1.3,抗倾覆稳定系数为1.6;地震工况挡墙抗滑移稳定系数为1.1,抗倾覆稳定系数为1.3。       根据《建筑边坡工程技术规范》(GB50330~2013)要求,营地后边坡安全等级取一级,一般工况边坡稳定安全系数取1.35,地震工况取1.15。营地前缘填方边坡安全等级取二级,一般工况边坡稳定安全系数取1.30,地震工况取1.10。3.2典型断面设计3.3计算分析成果(1)抗滑桩支挡边坡设计(2)重力式挡墙支护设计(3)扶壁式挡墙支挡结构设计4 总结       本项目属于斜坡场地周边边坡支护设计,根据不同位置地质条件及斜坡高度,采取了不同的支护措施。       利用南京库仑GEO5岩土分析软件,可以快速建立多种挡墙类型及抗滑桩支挡结构,便于方案对比分析,多模块可以联合使用,省去重复建模时间,提高了项目设计效率。 查看全部
<p>使用模块:GEO5土质边坡稳定性分析、抗滑桩设计、扶壁式挡土墙设计、重力式挡土墙设计</p><p><strong>1 项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;某水库位于金沙江左岸某二级支流中上游。水库为III等中型工程,工程任务为农业灌溉,城乡供水等综合利用。水库正常蓄水位1971.0m,设计洪水位1971.02m,校核洪水位1971.48m。水库总库容5113万m3,兴利库容4446万m3。工程由水库枢纽和灌区工程两部分组成,其中:水库枢纽包括大坝(粘土心墙石渣坝)、溢洪道、放空(导流)隧洞、取水隧洞等;灌区工程包括1条干渠和4条支渠。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;工程场地库坝区未来50年超越概率10%的基岩水平峰值加速度为0.121g,相应地震烈度为Ⅶ度。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据《水利水电工程合理使用年限及耐久性设计规范》(SL654-2014)表 3.0.2确定,对综合利用的水利水电工程,工程合理使用年限应按其中最高年限确定。该水库工程等别为Ⅲ等,工程规模为中型,确定工程合理使用年限为50年。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;水库配套管理营地工程区位于右岸,场地现状为斜坡地段。场地地面高程为 1993m~2017m,最大高程为 22m,自然边坡坡度为 15°~20°,局部较陡, 最大约 30°。因处于斜坡地带,需对营地周边边坡进行支护结构设计。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293414348507.png" alt="image.png"/></p><p style="text-align: center;">管理营地区域位置</p><p><strong>2 工程地质条件</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据工程地质测绘及勘探揭示,场地覆盖层主要为第四系残坡积形成的(Q<sub>4</sub><sup>el+dl</sup>) 含孤块碎石土、含碎砾石粉质黏土,下伏基岩为白垩系下统粉砂质泥岩,各岩土层地质特征自上而下描述如下:</p><p>(1)第四系残坡积层(Q<sub>4</sub><sup>el+dl</sup>)</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①<sub>1</sub> 含孤块碎石土:紫红色,主要为孤块石, 原岩为粉砂质泥岩,呈碎块-柱状,碎块大小 2-6cm,柱长 5cm-25cm,含量 60%-70%,中间夹少量粉质黏土。厚度 4.6m~6.5m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①<sub>2</sub> 含碎砾石粉质黏土: 褐色,稍湿~干燥,松散~稍密,可塑状,碎石呈棱角-次棱角状,大小1-5cm,含量约 20%~30%,原岩为粉砂质泥岩。厚度 1.5m~7m。</p><p>(2) 白垩系下统基岩</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②粉砂质泥岩:紫红色、青灰色,湿,成分以粘土矿物为主,泥质结构,薄层~中厚层状构造。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;按其风化程度的不同,粉砂质泥岩可分为以下三个亚层:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②<sub>1</sub> 强风化粉砂质泥岩: 强卸荷,岩体强烈卸荷松弛,普遍夹泥, 裂隙发育,遇水易崩解,性软,岩芯呈散体状结构,碎块大小 3cm~30cm。 厚度 1.5m~12m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②<sub>2</sub> 中风化粉砂质泥岩:岩体结构部分破坏,层理较为清晰,性脆,断口不平整,岩芯呈短柱状及柱状,较完整。 厚度 3.2m ~12m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②<sub>3</sub> 微新风化粉砂质泥岩:岩体结构基本未变,仅节理面有少量锈染,有少量风化裂隙,岩芯呈柱状及长柱状,较完整,本次未揭穿。</p><p style="text-align: center;">场地岩土体物理力学参数建议值</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293556747125.png" alt="image.png"/></p><p><strong>3 边坡支挡结构设计</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;营地后边坡采用抗滑桩结合逆作法锚拉式重力挡墙工艺,营地前缘边坡采用扶壁式挡墙填方施工,边坡开挖施工应严格按照从上至下刷坡,严禁未刷坡擅自开挖坡脚,采用动态信息化施工方法,做好施工期监测保证施工期安全。</p><p>3.1边坡安全等级</p><p>&nbsp; &nbsp; &nbsp; &nbsp;边坡、挡土墙结构设计工作年限为50年;1#抗滑桩结合挡墙支护的边坡安全等级为以及一级,结构重要性系数为1.1,2#挡墙边坡安全等级为二级,结构重要性系数为1.0,3#挡墙边坡安全等级为一级,结构重要性系数为1.1。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;持久工况挡墙抗滑移稳定系数为1.3,抗倾覆稳定系数为1.6;地震工况挡墙抗滑移稳定系数为1.1,抗倾覆稳定系数为1.3。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据《建筑边坡工程技术规范》(GB50330~2013)要求,营地后边坡安全等级取一级,一般工况边坡稳定安全系数取1.35,地震工况取1.15。营地前缘填方边坡安全等级取二级,一般工况边坡稳定安全系数取1.30,地震工况取1.10。</p><p>3.2典型断面设计</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293613580210.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293632403706.png" alt="image.png"/></p><p>3.3计算分析成果</p><p>(1)抗滑桩支挡边坡设计</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293654568646.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293672289728.png" alt="image.png"/></p><p>(2)重力式挡墙支护设计</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293692857938.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293705178783.png" alt="image.png"/></p><p>(3)扶壁式挡墙支挡结构设计</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293723622989.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293733596600.png" alt="image.png"/></p><p>4<strong> 总结</strong></p><p><strong>&nbsp; &nbsp; &nbsp; &nbsp;</strong>本项目属于斜坡场地周边边坡支护设计,根据不同位置地质条件及斜坡高度,采取了不同的支护措施。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;利用南京库仑GEO5岩土分析软件,可以快速建立多种挡墙类型及抗滑桩支挡结构,便于方案对比分析,多模块可以联合使用,省去重复建模时间,提高了项目设计效率。</p>

GEO5某省道应急抢险修复工程设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 966 次浏览 • 2024-08-22 10:13 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、微型桩设计一、项目背景       某省道K160+800~K160+845段为直线填方路基段,外侧路肩墙高3.0~4.0m高,路面标高660.58~662.84m左右,纵面较平缓,道路外侧坡体为自然状态的单斜坡地形,横坡总体较缓。       今年5月中旬因遭受连续强降雨,地表水陡增,雨水渗入填土与原生黏性土面(粉质黏土属相对隔水层),导致上部填土层含水量增大,逐渐饱水软化,抗剪强度减小,容重增加等综合作用下产生路基沉降约20cm、路面开裂形成纵向裂缝,裂缝宽约5~10cm,路肩墙向外推移变形,严重影响交通。安全隐患影响较大。该道路为境内主干道,涉及数万人员出行及各种物资运输,影响重大,综合以上因素,该段路基水毁急需抢险治理。道路现场照片二、滑坡体特征       根据本次工程地质测绘、钻探揭露及收集的已有资料,滑坡滑体物质主要由粉质粘土夹块碎石、素填土组成,厚度2.0~6.0m,黄褐色、棕褐色,块石含量不均,一般10~30%,粒径一般 0.10~0.50m,粘土呈软塑~可塑状,透水性较差。       滑带土位于土层内部,埋深3.1m;滑带土主要为粘土,黄褐色,软塑状,含约10%的角砾、碎石,角砾粒径一般5~20mm,角砾呈次棱角状,无定向排列,滑带土受挤压、搓揉明显。       滑床物质为坡洪积(Q4dl+pl)黄褐色粉质粘土,粉质粘土呈可塑~硬塑状,滑床形态纵向上呈折线型,与地表形态相近。       滑体中地下水主要为松散岩类孔隙水,其地下水主要为大气降雨补给,具就地补给就近排泄,径流距离较短的特点。因滑坡体位于斜坡地段,地下水赋存条件差,排泄条件好,勘察期间对施工钻孔进行的水文地质观测及抽水试验成果,滑坡路段地下水较贫乏。滑带土取芯照片       该段上部为原道路修建时堆积填土,厚度约1~5.5m,下部为可塑~硬塑状粉质黏土,黄褐色,含少量碎石角砾,厚度约2.0~30.0m,下伏基岩为二叠系中统龙潭、大隆并组的页岩、灰岩,岩体较破碎,附近较远处基岩测得实际产状,倾向为328°,倾角12°;斜坡主要为填土、粉质黏土,以荒地、林地相间,局部旱地。植被总体较发育。近10年岸坡总体较稳定,未有大范围岸坡滑移现象,以局部下沉变形迹象为主。三、滑坡稳定性分析(1)定性分析       滑坡的形成,是由其地形地貌、地层岩性、水及人类工程活动的共同作用的结果:厚度较大的第四系坡洪积土的存在,为滑坡的形成提供了物质基础。据已有钻探资料揭示,在滑坡区域内,坡洪积土厚一般4.0~30.0m,为滑坡层产生不同程度的变形;水的作用,是滑坡形成的激发因素,区域内降雨量大并集中,多为大、暴雨,雨水的下渗,不但降低土体的抗剪强度,还提高滑体重量,产生动水压力等,为滑坡产生变形提了有利条件。       滑坡所的形成提供丰富的物质来源;软弱结构面的存在为滑坡的形成提供了良好的地质环境,便于形成滑动面,由于土体本身强度的降低,形成软弱结构面,这样接触面倾角适宜的条件下,使土体产生足够的下滑分力;滑坡体位处斜坡地段,地面坡角与滑面坡度基本一致,坡度角一般为10~22°,地形坡度条件为滑坡形成与位移提供了临空面,大气降水对滑体进行冲刷、侵蚀、饱和软化,使滑坡堆积处位置地形坡角较大,滑坡临空条件较好,为滑坡的形成及发生创造了有利的工程地质条件。汛期雨水较多,滑坡持续受大雨、暴雨影响,造成滑体物质力学性质降低,导致坡体中前部局部出现滑移、外挤迹象。若遇暴雨或持续降雨影响,该滑坡有可能在坡体中部、后部出现滑移破坏,并且有可能进一步加剧变形,发展为滑体发生整体下滑。目前该滑坡处于欠稳定状态。(2)滑动面参数确定       滑坡滑面参数的综合确定:综合考虑滑坡体性质(成分及覆盖层厚度)、滑面的工程物理特性、同类工程经验类比、反演分析成果及相关规范,确定本滑坡滑动面的抗剪设计参数为:C=14.2kPa(12.5 kPa),Φ=9.0°(8.5°)。滑坡设计计算参数见下表:(3)定量计算       本次稳定性计算采用GEO5软件。工况分为工况一、自重(天然状态),工况二、自重+暴雨(饱和状态)。安全系数根据《公路路基设计规范》(JGT D30-2015)第7.2.2条第1款有关规定,计算时安全系数分别为:       工况一、自重(天然状态)下,安全系数取1.25;       工况二、自重+暴雨(饱和状态)下,安全系数取1.15。       稳定性计算考虑2种工况:一、自重+天然状态;二、自重+饱水状态;对现有滑坡稳定性进行计算,计算方法采用折线法(不平衡推力法隐式),结算结果汇总如下:四、滑坡治理设计       在本设计中,首先对治理方案的技术合理性、施工的可行性和经济三个方面综合考虑。同时,着重考虑施工安全、工期的因素,从而选择最快捷的治理方案。结合本道路的特殊性及实际情况,对该滑坡进行综合治理。尽早完成道路施工为基本,其次为持久型治理设计,其目的在于确保以后该道路在长期运行的安全,同时消除滑坡对道路的安全隐患。两部分相辅相成,共同作用达到缩短工期、节约成本的目的。       综合考虑现场地形、地质及环境条件,其设计治理方案为:对既有滑坡体采用道路中线附近钢管桩注浆加固+外侧钢管桩地梁+挡墙恢复路基+道路中线内侧钻孔注浆加固+仰斜式排水孔+综合截排水措施,其它为路面恢复、综合交安。       本次设计方案验算是基于勘察成果所提供的岩土参数进行支挡后的稳定性计算,计算考虑2种工况:一、支挡+自重+天然状态;二、支挡+自重+饱水状态,计算方法采用折线法(不平衡推力法隐式),结算结果汇总如下:五、总结       本项目属于道路应急抢险修复工程。现场发现异常情况后,通过勘察了解场地地质构造及滑带土性质,从定性和定量角度分析了道路边坡的稳定性,从应急抢险角度出发,制定了钢管桩加挡墙的联合支挡形式。       本项目利用GEO5软件进行分析和验算,在场地评价和支护结构设计方面都起到了技术支撑作用,为设计方案提供了依据,最终方案已指导现场顺利施工。现场施工照片 查看全部
<p>使用模块:GEO5土质边坡稳定性分析、微型桩设计</p><p><strong>一、项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;某省道K160+800~K160+845段为直线填方路基段,外侧路肩墙高3.0~4.0m高,路面标高660.58~662.84m左右,纵面较平缓,道路外侧坡体为自然状态的单斜坡地形,横坡总体较缓。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;今年5月中旬因遭受连续强降雨,地表水陡增,雨水渗入填土与原生黏性土面(粉质黏土属相对隔水层),导致上部填土层含水量增大,逐渐饱水软化,抗剪强度减小,容重增加等综合作用下产生路基沉降约20cm、路面开裂形成纵向裂缝,裂缝宽约5~10cm,路肩墙向外推移变形,严重影响交通。安全隐患影响较大。该道路为境内主干道,涉及数万人员出行及各种物资运输,影响重大,综合以上因素,该段路基水毁急需抢险治理。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292423186125.png" alt="image.png"/></p><p style="text-align: center;">道路现场照片</p><p><strong>二、滑坡体特征</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据本次工程地质测绘、钻探揭露及收集的已有资料,滑坡滑体物质主要由粉质粘土夹块碎石、素填土组成,厚度2.0~6.0m,黄褐色、棕褐色,块石含量不均,一般10~30%,粒径一般 0.10~0.50m,粘土呈软塑~可塑状,透水性较差。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑带土位于土层内部,埋深3.1m;滑带土主要为粘土,黄褐色,软塑状,含约10%的角砾、碎石,角砾粒径一般5~20mm,角砾呈次棱角状,无定向排列,滑带土受挤压、搓揉明显。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑床物质为坡洪积(Q<sub>4</sub><sup>dl+pl</sup>)黄褐色粉质粘土,粉质粘土呈可塑~硬塑状,滑床形态纵向上呈折线型,与地表形态相近。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑体中地下水主要为松散岩类孔隙水,其地下水主要为大气降雨补给,具就地补给就近排泄,径流距离较短的特点。因滑坡体位于斜坡地段,地下水赋存条件差,排泄条件好,勘察期间对施工钻孔进行的水文地质观测及抽水试验成果,滑坡路段地下水较贫乏。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292469304981.png" alt="image.png"/></p><p style="text-align: center;">滑带土取芯照片</p><p>&nbsp; &nbsp; &nbsp; &nbsp;该段上部为原道路修建时堆积填土,厚度约1~5.5m,下部为可塑~硬塑状粉质黏土,黄褐色,含少量碎石角砾,厚度约2.0~30.0m,下伏基岩为二叠系中统龙潭、大隆并组的页岩、灰岩,岩体较破碎,附近较远处基岩测得实际产状,倾向为328°,倾角12°;斜坡主要为填土、粉质黏土,以荒地、林地相间,局部旱地。植被总体较发育。近10年岸坡总体较稳定,未有大范围岸坡滑移现象,以局部下沉变形迹象为主。</p><p><strong>三、滑坡稳定性分析</strong></p><p><strong>(1)定性分析</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑坡的形成,是由其地形地貌、地层岩性、水及人类工程活动的共同作用的结果:厚度较大的第四系坡洪积土的存在,为滑坡的形成提供了物质基础。据已有钻探资料揭示,在滑坡区域内,坡洪积土厚一般4.0~30.0m,为滑坡层产生不同程度的变形;水的作用,是滑坡形成的激发因素,区域内降雨量大并集中,多为大、暴雨,雨水的下渗,不但降低土体的抗剪强度,还提高滑体重量,产生动水压力等,为滑坡产生变形提了有利条件。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑坡所的形成提供丰富的物质来源;软弱结构面的存在为滑坡的形成提供了良好的地质环境,便于形成滑动面,由于土体本身强度的降低,形成软弱结构面,这样接触面倾角适宜的条件下,使土体产生足够的下滑分力;滑坡体位处斜坡地段,地面坡角与滑面坡度基本一致,坡度角一般为10~22°,地形坡度条件为滑坡形成与位移提供了临空面,大气降水对滑体进行冲刷、侵蚀、饱和软化,使滑坡堆积处位置地形坡角较大,滑坡临空条件较好,为滑坡的形成及发生创造了有利的工程地质条件。汛期雨水较多,滑坡持续受大雨、暴雨影响,造成滑体物质力学性质降低,导致坡体中前部局部出现滑移、外挤迹象。若遇暴雨或持续降雨影响,该滑坡有可能在坡体中部、后部出现滑移破坏,并且有可能进一步加剧变形,发展为滑体发生整体下滑。目前该滑坡处于欠稳定状态。</p><p><strong>(2)滑动面参数确定</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑坡滑面参数的综合确定:综合考虑滑坡体性质(成分及覆盖层厚度)、滑面的工程物理特性、同类工程经验类比、反演分析成果及相关规范,确定本滑坡滑动面的抗剪设计参数为:C=14.2kPa(12.5 kPa),Φ=9.0°(8.5°)。</p><p>滑坡设计计算参数见下表:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292524569019.png" alt="image.png"/></p><p><strong>(3)定量计算</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次稳定性计算采用GEO5软件。工况分为工况一、自重(天然状态),工况二、自重+暴雨(饱和状态)。安全系数根据《公路路基设计规范》(JGT D30-2015)第7.2.2条第1款有关规定,计算时安全系数分别为:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;工况一、自重(天然状态)下,安全系数取1.25;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;工况二、自重+暴雨(饱和状态)下,安全系数取1.15。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;稳定性计算考虑2种工况:一、自重+天然状态;二、自重+饱水状态;对现有滑坡稳定性进行计算,计算方法采用折线法(不平衡推力法隐式),结算结果汇总如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292571359212.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292593417922.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292606879846.png" alt="image.png"/></p><p><strong>四、滑坡治理设计</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;在本设计中,首先对治理方案的技术合理性、施工的可行性和经济三个方面综合考虑。同时,着重考虑施工安全、工期的因素,从而选择最快捷的治理方案。结合本道路的特殊性及实际情况,对该滑坡进行综合治理。尽早完成道路施工为基本,其次为持久型治理设计,其目的在于确保以后该道路在长期运行的安全,同时消除滑坡对道路的安全隐患。两部分相辅相成,共同作用达到缩短工期、节约成本的目的。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;综合考虑现场地形、地质及环境条件,其设计治理方案为:对既有滑坡体采用道路中线附近钢管桩注浆加固+外侧钢管桩地梁+挡墙恢复路基+道路中线内侧钻孔注浆加固+仰斜式排水孔+综合截排水措施,其它为路面恢复、综合交安。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次设计方案验算是基于勘察成果所提供的岩土参数进行支挡后的稳定性计算,计算考虑2种工况:一、支挡+自重+天然状态;二、支挡+自重+饱水状态,计算方法采用折线法(不平衡推力法隐式),结算结果汇总如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292640257868.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292653711604.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292693961253.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292706726594.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292722894560.png" alt="image.png"/></p><p><strong>五、总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本项目属于道路应急抢险修复工程。现场发现异常情况后,通过勘察了解场地地质构造及滑带土性质,从定性和定量角度分析了道路边坡的稳定性,从应急抢险角度出发,制定了钢管桩加挡墙的联合支挡形式。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本项目利用GEO5软件进行分析和验算,在场地评价和支护结构设计方面都起到了技术支撑作用,为设计方案提供了依据,最终方案已指导现场顺利施工。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292745367036.png" alt="image.png"/></p><p style="text-align: center;">现场施工照片</p>

基于静力平衡法的带拉杆板桩嵌固深度及内力的手算与GEO5电算对比

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 836 次浏览 • 2024-08-21 17:46 • 来自相关话题

       按照《建筑边坡工程技术规范》(GB50330-2013)附录F的规定,对板肋式及桩锚式挡墙,当立柱嵌入深度较小时,视立柱下端为自由端,可以采用静力平衡法计算,当立柱嵌入深度较大时,视立柱下端为固定端,按等值梁法计算。       在GEO5软件当中,采用深基坑支护结构设计模块,根据底部固支或铰支情况可以分别模拟支锚式支挡结构的等值梁法和静力平衡法分析。这里选取某典型案例,进行静力平衡法手算和软件计算的对比分析。1、案例介绍       一个下端自由支撑,上部有锚定拉杆的板桩挡土墙,如下图所示,周围土重度γ=19kN/m³,φ=30°,粘聚力c=0,锚定拉杆距地面1m,水平间距a=2.5m,基坑开挖深度为h=8m,请采用静力平衡法计算桩墙的入土深度和桩身内力。2、手算过程(1)土压力计算主动土压力:被动土压力:(2)外力对支撑点取矩       其中被动土压力折减系数取K=2,将d=1、h=8以及Ea和Ep的式子代入上式,解得三次方程:求解后得到桩的入土深度为。水平支撑的作用力:桩身最大弯矩处即是剪力为0点,设该点到地面的距离为h0。 最大弯矩3、GEO5建模计算       打开深基坑支护结构设计模块,输入土层材料参数,设置基坑开挖深度和锚杆位置及间距。       岩土作用力选择主动土压力,分布形式选择最左侧常规的三角形分布。       点击分析,结构底端支座类型选择铰支,被动土压力折减系数输入0.5,自动得到嵌固深度t=5.52m,水平支撑作用力为361.36kN,单位宽度弯矩最大值为505.97kNm。4、对比分析       将手算和GEO5计算得到的几个关键指标进行对比,做误差分析,可以得到如下结果:针对嵌固深度,两者计算基本一致,对于水平支撑作用力和最大弯矩值,两者计算误差在1%左右。       相比手算过程,使用GEO5分析计算更加快捷直观,同时还支持添加更为复杂的外部环境,比如超载,地下水作用等。 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp;按照《建筑边坡工程技术规范》(GB50330-2013)附录F的规定,对板肋式及桩锚式挡墙,当立柱嵌入深度较小时,视立柱下端为自由端,可以采用静力平衡法计算,当立柱嵌入深度较大时,视立柱下端为固定端,按等值梁法计算。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;在GEO5软件当中,采用深基坑支护结构设计模块,根据底部固支或铰支情况可以分别模拟支锚式支挡结构的等值梁法和静力平衡法分析。这里选取某典型案例,进行静力平衡法手算和软件计算的对比分析。</p><p>1、案例介绍</p><p>&nbsp; &nbsp; &nbsp; &nbsp;一个下端自由支撑,上部有锚定拉杆的板桩挡土墙,如下图所示,周围土重度γ=19kN/m³,φ=30°,粘聚力c=0,锚定拉杆距地面1m,水平间距a=2.5m,基坑开挖深度为h=8m,请采用静力平衡法计算桩墙的入土深度和桩身内力。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724232116248430.png" alt="image.png" width="307" height="285" style="width: 307px; height: 285px;"/></p><p>2、手算过程</p><p>(1)土压力计算</p><p>主动土压力:</p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724232158781591.png" alt="image.png" width="468" height="38" style="width: 468px; height: 38px;"/></p><p>被动土压力:</p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724232192933052.png" alt="image.png" width="398" height="40" style="width: 398px; height: 40px;"/><img class="loadingclass" id="loading_m03ncbqp" src="https://wen.kulunsoft.com/stat ... ot%3B title="正在上传..."/></p><p>(2)外力对支撑点取矩</p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724232219873124.png" alt="image.png" width="289" height="37" style="width: 289px; height: 37px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;其中被动土压力折减系数取K=2,将d=1、h=8以及Ea和Ep的式子代入上式,解得三次方程:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724232250131985.png" alt="image.png" width="217" height="47" style="width: 217px; height: 47px;"/></p><p>求解后得到桩的入土深度为<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724232289971787.png" alt="image.png" width="68" height="20" style="width: 68px; height: 20px;"/>。</p><p>水平支撑的作用力:</p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724232311593173.png" alt="image.png" width="504" height="38" style="width: 504px; height: 38px;"/></p><p>桩身最大弯矩处即是剪力为0点,设该点到地面的距离为h<sub>0</sub>。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724232332624024.png" alt="image.png" width="105" height="36" style="width: 105px; height: 36px;"/>&nbsp;</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724233416451952.png" alt="image.png" width="338" height="55" style="width: 338px; height: 55px;"/></p><p>最大弯矩<br/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724233474475788.png" alt="image.png" width="465" height="100" style="width: 465px; height: 100px;"/></p><p>3、GEO5建模计算</p><p>&nbsp; &nbsp; &nbsp; &nbsp;打开深基坑支护结构设计模块,输入土层材料参数,设置基坑开挖深度和锚杆位置及间距。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724233505633806.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;岩土作用力选择主动土压力,分布形式选择最左侧常规的三角形分布。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724233527966874.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;点击分析,结构底端支座类型选择铰支,被动土压力折减系数输入0.5,自动得到嵌固深度t=5.52m,水平支撑作用力为361.36kN,单位宽度弯矩最大值为505.97kNm。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724233554112021.png" alt="image.png"/></p><p>4、对比分析</p><p>&nbsp; &nbsp; &nbsp; &nbsp;将手算和GEO5计算得到的几个关键指标进行对比,做误差分析,可以得到如下结果:针对嵌固深度,两者计算基本一致,对于水平支撑作用力和最大弯矩值,两者计算误差在1%左右。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;相比手算过程,使用GEO5分析计算更加快捷直观,同时还支持添加更为复杂的外部环境,比如超载,地下水作用等。</p>

地震动水压力的计算及在GEO5中的使用

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 1129 次浏览 • 2024-08-21 17:16 • 来自相关话题

       在对支挡结构进行地震工况的分析时,不仅要考虑地震对结构自身的影响以及地震土压力的影响,如果环境中有地下水或地表水,还需要考虑地震动水压力的影响。本文参考国内各行业规范及国际通用方法,对地震动水压力的计算及在GEO5软件中的使用进行说明。1. 国际通用方法       根据物部-冈部(Mononobe-Okabe)或者 Arango提出的方法,地震动水压力呈抛物线分布,简化为梯形分布后,作用在结构后面的动水压力合力可以表示为:其中: γw-水的容重kh-水平地震加速度系数H-结构的高度合力作用点位置距离墙踵的距离为0.4H。2. 国内规范方法       国内地震动水压力的计算根据不同行业规范略有差异,但总体上与国际通用方法相匹配。以下分别论述。2.1 《水工建筑物抗震设计标准》(GB51247-2018)(1)拟静力法       根据规范7.1.12节的论述,当采用拟静力法计算重力坝地震作用效应时,水深h处的地震动水压力可表示为:其中:Pw(h)--   作用在直立迎水坝面水深h处的地震动水压力代表值-- 水平向设计地震加速度代表值 --  地震作用的效应折减系数,动力法计算地震作用效应时取为1.00;拟静力法计算地震作用效应时取为0.25--   水深h处的地震动水压力分布系数,应按表7.1.12的规定取值--   水体质量密度标准值H0--  水深       那么单位宽度坝面的总地震动水压力可以表示为合力作用点在水下0.54H0处。       这个合力的计算实际上是将表格7.1.12的分布系数在总深度或总墙高范围内进行积分计算的结果,类似如下分析,感兴趣的工程师可以自行作图计算。(2)动力法       根据规范7.1.14的论述,采用动力法时,水深h处的水平向地震动水压力按下式计算       规范中没有提总的动水压力,但将上式在总深度H0范围内积分得到       可以看出采用动力法计算得到的总动水压力跟国际通用方法是一致的。       此外,规范《水电工程水工建筑物抗震设计规范》(NB35047-2015)跟上述国标要求一致。2.2 《水运工程抗震设计规范》(JTS146-2012)       根据规范5.4节的论述,作用在直墙式建筑物上的地震动水压力强度、总动水压力可以分别按下式计算:其中C为综合影响系数,取0.25,η取1。        跟水工建筑物抗震设计标准中的动力法对比,可以发现水运行业的计算公式除了多了一个综合影响系数,其他都一致。相当于采用水运公式计算,将动水压力进行了折减。2.3 其他规范       在《铁路工程抗震设计规范》(50111-2006(2009年版))以及《公路工程抗震设计规范》中,对地震动水压力也有论述,但只针对桥梁工程,并不适用于常规岩土支挡结构设计,此处不再引用。3. GEO5中的使用       在分析设置中,用户可以指定地震荷载分析时采用的规范,对于地震动水压力计算,当选择Mononobe-Okabe、 Arango以及NCMA-SRW美标规范时,动水压力都按本文第一节提到的国际通用方法计算,当选择国内水运规范计算时,软件按照2.2节水运规范的公式计算,当选择水电规范时,软件按照水2.1节中拟静力法的公式计算。选择其他行业规范时,默认参考2.1节水电行业动力法的公式计算。       另外,在GEO5软件当中,还需要注意两点:①当墙前有地下水时,软件将计算地震影响下作用在挡墙前面的动水压力;②当墙后土体渗透性较低时,如果不考虑动水压力的影响,此时在地震荷载界面中的地震动水压力中选择承压水(土体渗透性差),反之选择自由水(土体渗透性好)。 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp;在对支挡结构进行地震工况的分析时,不仅要考虑地震对结构自身的影响以及地震土压力的影响,如果环境中有地下水或地表水,还需要考虑地震动水压力的影响。本文参考国内各行业规范及国际通用方法,对地震动水压力的计算及在GEO5软件中的使用进行说明。</p><p>1. <strong>国际通用方法</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据物部-冈部(Mononobe-Okabe)或者 Arango提出的方法,地震动水压力呈抛物线分布,简化为梯形分布后,作用在结构后面的动水压力合力可以表示为:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230932920183.png" alt="image.png" width="154" height="42" style="width: 154px; height: 42px;"/></p><p>其中:&nbsp;</p><table><tbody><tr class="firstRow"><td><p><em>γ</em><sub><em>w</em></sub></p></td><td><p>-</p></td><td><p>水的容重</p></td></tr><tr><td><p><em>k</em><sub><em>h</em></sub></p></td><td><p>-</p></td><td><p>水平地震加速度系数</p></td></tr><tr><td><p><em>H</em></p></td><td><p>-</p></td><td><p>结构的高度</p></td></tr></tbody></table><p>合力作用点位置距离墙踵的距离为0.4H。</p><p>2. <strong>国内规范方法</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;国内地震动水压力的计算根据不同行业规范略有差异,但总体上与国际通用方法相匹配。以下分别论述。</p><p>2.1 《水工建筑物抗震设计标准》(GB51247-2018)</p><p>(1)拟静力法</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据规范7.1.12节的论述,当采用拟静力法计算重力坝地震作用效应时,水深h处的地震动水压力可表示为:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231011586016.png" alt="image.png" width="196" height="26" style="width: 196px; height: 26px;"/></p><p>其中:</p><p>Pw(h)--&nbsp;&nbsp; 作用在直立迎水坝面水深h处的地震动水压力代表值</p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231049887572.png" alt="image.png" width="24" height="22" style="width: 24px; height: 22px;"/>-- 水平向设计地震加速度代表值</p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231077942516.png" alt="image.png" width="19" height="23" style="width: 19px; height: 23px;"/>&nbsp;--&nbsp; 地震作用的效应折减系数,动力法计算地震作用效应时取为1.00;拟静力法计算地震作用效应时取为0.25</p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231102337513.png" alt="image.png" width="37" height="22" style="width: 37px; height: 22px;"/>--&nbsp; &nbsp;水深h处的地震动水压力分布系数,应按表7.1.12的规定取值</p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231130339629.png" alt="image.png" width="25" height="22" style="width: 25px; height: 22px;"/>--&nbsp; &nbsp;水体质量密度标准值</p><p>H<sub>0</sub>--&nbsp; 水深</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231169152494.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;那么单位宽度坝面的总地震动水压力可以表示为</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231186251269.png" alt="image.png" width="179" height="32" style="width: 179px; height: 32px;"/></p><p>合力作用点在水下0.54H<sub>0</sub>处。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;这个合力的计算实际上是将表格7.1.12的分布系数在总深度或总墙高范围内进行积分计算的结果,类似如下分析,感兴趣的工程师可以自行作图计算。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231216629148.png" alt="image.png"/></p><p>(2)动力法</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据规范7.1.14的论述,采用动力法时,水深h处的水平向地震动水压力按下式计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231234127809.png" alt="image.png" width="162" height="38" style="width: 162px; height: 38px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;规范中没有提总的动水压力,但将上式在总深度H<sub>0</sub>范围内积分得到</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231263452910.png" alt="image.png" width="195" height="41" style="width: 195px; height: 41px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;可以看出采用动力法计算得到的总动水压力跟国际通用方法是一致的。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;此外,规范《水电工程水工建筑物抗震设计规范》(NB35047-2015)跟上述国标要求一致。</p><p>2.2 《水运工程抗震设计规范》(JTS146-2012)</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据规范5.4节的论述,作用在直墙式建筑物上的地震动水压力强度、总动水压力可以分别按下式计算:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231314422915.png" alt="image.png" width="1" height="1" style="width: 1px; height: 1px;"/><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231327308195.png" alt="image.png" width="1" height="1" style="width: 1px; height: 1px;"/><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231803287082.png" alt="image.png" width="173" height="94" style="width: 173px; height: 94px;"/></p><p>其中C为综合影响系数,取0.25,η取1。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 跟水工建筑物抗震设计标准中的动力法对比,可以发现水运行业的计算公式除了多了一个综合影响系数,其他都一致。相当于采用水运公式计算,将动水压力进行了折减。</p><p>2.3 其他规范</p><p>&nbsp; &nbsp; &nbsp; &nbsp;在《铁路工程抗震设计规范》(50111-2006(2009年版))以及《公路工程抗震设计规范》中,对地震动水压力也有论述,但只针对桥梁工程,并不适用于常规岩土支挡结构设计,此处不再引用。</p><p>3. <strong>GEO5</strong><strong>中的使用</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;在分析设置中,用户可以指定地震荷载分析时采用的规范,对于地震动水压力计算,当选择Mononobe-Okabe、 Arango以及NCMA-SRW美标规范时,动水压力都按本文第一节提到的国际通用方法计算,当选择国内水运规范计算时,软件按照2.2节水运规范的公式计算,当选择水电规范时,软件按照水2.1节中拟静力法的公式计算。选择其他行业规范时,默认参考2.1节水电行业动力法的公式计算。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231857222602.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;另外,在GEO5软件当中,还需要注意两点:</p><p>①当墙前有地下水时,软件将计算地震影响下作用在挡墙前面的动水压力;</p><p>②当墙后土体渗透性较低时,如果不考虑动水压力的影响,此时在地震荷载界面中的地震动水压力中选择承压水(土体渗透性差),反之选择自由水(土体渗透性好)。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724231885312559.png" alt="image.png"/></p>

GEO5自定义柱状图出图方法——以水文地质钻孔为例

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 819 次浏览 • 2024-08-21 17:00 • 来自相关话题

       GEO5 2024版丰富了三维地质建模模块的自定义数据结构功能,以柱状图为例,用户可自行配置表头数据内容,自定义列的数据类型和绘图样式,本文以某水文地质钻孔为例,说明在GEO5中如何自定义柱状图出图。某水文地质钻孔1 编辑模版1.1 创建新的模板       打开三维地质建模模块,在右侧【模式】选项框中选择【模板】选项,可以看到界面模版默认为“中国-标准”,点击【复制并编辑当前模版并添加到模版管理器】,此处自定义模版命名为“水文钻孔模版”。       将模版保存后再打开,选中编号2的水井,点击【编辑】,弹出如下图所示窗口。1.2 自定义用户数据       上图左侧即为软件自带水井模版的数据内容和类型,结合本文要定义的水文地质钻孔样式,不需要自带的地下水位、外套管、井口和井底、数据-规程选项等内容,选中相关字段,点击右侧的【删除】选项。另外,还需要增加“岩芯采取率”、“电测深曲线”两个字段和表头的相关钻孔信息,点击【添加】,输入方法选择【创建新的本地数据字段】。       点击【下一个】,弹出窗口中,类型选择【表格】,表格类型选择【带深度】,名称命名为“岩芯采取率”,点击右侧【添加】选项,增加表格列,输入方法仍选择【创建新的本地数据字段】,类型选择【数字】,名称输入“岩芯采取率”,小数位数均设置为0。点击【确定】,最后点击【添加】即完成“岩芯采取率”数据字段的添加,“电测深曲线”字段类似,这里不再赘述。       针对表头的钻孔信息,我们可以单独定义一个【组】,把表头相关的所有信息都放到里面,数据类型可以都选择字符串形式。1.3 自定义出图样式       定义好数据字段后,接下来对出图样式进行编辑。删掉原有的柱状图出图样式,点击【添加】。       我们先定义表头菜单,表头的编辑和操作方法和EXCEL表格非常类似。用户可以自定义行、列及其他维度的信息,可以合并和拆分单元格,自定义框架和背景颜色等。       根据需要,表头总共3行8列。局部区域合并单元格后,效果如下图所示。      表格里的数据字段可以直接选择之前定义好的内容,以“钻孔类型”为例,选中A1单元格,点击【插入字段】,选择【试验数据—名称】里的“钻孔信息——钻孔类型”,点击【确定】即可。该窗口中还可以调整文字颜色、样式、大小等格式。在B1单元格中,选择【试验数据—数据】,用于存储钻孔类型的实际值。       其他表头内容定义方式一样,定义完成后,得到表头样式如下,由于这是定义的模板,数据栏还没有录入数据,所以显示“Lorem ipsum”的空字符。       接下来,定义列。点击面板最右侧【添加】,将新增的表格类型改为“列”,按照水文钻孔柱状图样例,需要显示7列数据,包括“地层时代”、“厚度”、“地层柱状”、“岩性描述”、“岩芯采取率”、“电测深曲线”和“成井结构”,因绘图需要,将“地层柱状”和“岩芯采取率”按2列输入,“成井结构”按3列输入,总共需要输入11列。       这里以第一列“地层时代”为例,列名称直接输入“地层时代”,列内容中,列类型选择【钻孔柱状图】,图案选择【地层/岩土材料图例】,插入字段选择【表格属性-数据】中的【地层描述】,即后续地层时代在地层描述中输入即可。       其他列类似操作,需要注意的是,当需要选择深度坐标轴时,比如“地层柱状”和“岩芯采取率”左侧均有深度坐标,列的名称可以留空,列内容直接在类型中选择【深度坐标轴】。       当输入列内容为“岩芯采取率”和“电测深曲线”时,列类型注意选择【深度图标】,在【添加系列】时选择相应的内容。       当列定义完成后,如下图所示。       根据表格样式,调整每列的相对宽度,得到更美观的表格样式。       自此,整个出图样式就定义完成,将出图规程的名称定义为“水文钻孔”,规程类别选择【柱状剖面】。2 录入数据       在【勘察数据】中录入水文钻孔的数据信息,点击【添加】,选择【水井】,在弹出的窗口中录入相关信息,可以看到自定义的钻孔信息、岩芯采取率和电测深曲线都在目录内。2.1 录入基础信息       录入钻孔信息,直接输入文字或者数字。       录入地层信息,输入不同深度的的岩土材料,选择相应的颜色和花纹,地层描述中备注地质年代。       录入成井结构的花纹样式,可以在图例中选择类似的样式,也可以用纯色的形式模拟。2.2 录入深度数据       对于岩芯采取率和电测深曲线,需要录入随深度的变化数据,这里可以导入excel数据或者进行单个录入。3 出图效果       录入完数据后,保存信息,到【柱状剖面】界面中,选中该钻孔,选择【打印日志】,即可得到柱状图。       柱状图效果如下,对于填充效果、文字大小和线性属性还可以在模板中人为调整。       图件可以保存为PDF或者word格式,其他的钻孔录入数据后,就可以用已经定义好的模版进行批量的出图。 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp;GEO5 2024版丰富了三维地质建模模块的自定义数据结构功能,以柱状图为例,用户可自行配置表头数据内容,自定义列的数据类型和绘图样式,本文以某水文地质钻孔为例,说明在GEO5中如何自定义柱状图出图。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230227306217.png" alt="image.png"/></p><p style="text-align: center;">某水文地质钻孔</p><p>1 编辑模版</p><p>1.1 创建新的模板</p><p>&nbsp; &nbsp; &nbsp; &nbsp;打开三维地质建模模块,在右侧【模式】选项框中选择【模板】选项,可以看到界面模版默认为“中国-标准”,点击【复制并编辑当前模版并添加到模版管理器】,此处自定义模版命名为“水文钻孔模版”。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230267994677.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;将模版保存后再打开,选中编号2的水井,点击【编辑】,弹出如下图所示窗口。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230288260945.png" alt="image.png"/></p><p>1.2 自定义用户数据</p><p>&nbsp; &nbsp; &nbsp; &nbsp;上图左侧即为软件自带水井模版的数据内容和类型,结合本文要定义的水文地质钻孔样式,不需要自带的地下水位、外套管、井口和井底、数据-规程选项等内容,选中相关字段,点击右侧的【删除】选项。另外,还需要增加“岩芯采取率”、“电测深曲线”两个字段和表头的相关钻孔信息,点击【添加】,输入方法选择【创建新的本地数据字段】。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230311820227.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;点击【下一个】,弹出窗口中,类型选择【表格】,表格类型选择【带深度】,名称命名为“岩芯采取率”,点击右侧【添加】选项,增加表格列,输入方法仍选择【创建新的本地数据字段】,类型选择【数字】,名称输入“岩芯采取率”,小数位数均设置为0。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230337334598.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230353884912.png" alt="image.png"/></p><p>点击【确定】,最后点击【添加】即完成“岩芯采取率”数据字段的添加,“电测深曲线”字段类似,这里不再赘述。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;针对表头的钻孔信息,我们可以单独定义一个【组】,把表头相关的所有信息都放到里面,数据类型可以都选择字符串形式。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230373868659.png" alt="image.png"/></p><p>1.3 自定义出图样式</p><p>&nbsp; &nbsp; &nbsp; &nbsp;定义好数据字段后,接下来对出图样式进行编辑。删掉原有的柱状图出图样式,点击【添加】。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230395468427.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;我们先定义表头菜单,表头的编辑和操作方法和EXCEL表格非常类似。用户可以自定义行、列及其他维度的信息,可以合并和拆分单元格,自定义框架和背景颜色等。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230412211274.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据需要,表头总共3行8列。局部区域合并单元格后,效果如下图所示。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230434679208.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; 表格里的数据字段可以直接选择之前定义好的内容,以“钻孔类型”为例,选中A1单元格,点击【插入字段】,选择【试验数据—名称】里的“钻孔信息——钻孔类型”,点击【确定】即可。该窗口中还可以调整文字颜色、样式、大小等格式。在B1单元格中,选择【试验数据—数据】,用于存储钻孔类型的实际值。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230455941172.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;其他表头内容定义方式一样,定义完成后,得到表头样式如下,由于这是定义的模板,数据栏还没有录入数据,所以显示“Lorem ipsum”的空字符。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230476749198.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;接下来,定义列。点击面板最右侧【添加】,将新增的表格类型改为“列”,按照水文钻孔柱状图样例,需要显示7列数据,包括“地层时代”、“厚度”、“地层柱状”、“岩性描述”、“岩芯采取率”、“电测深曲线”和“成井结构”,因绘图需要,将“地层柱状”和“岩芯采取率”按2列输入,“成井结构”按3列输入,总共需要输入11列。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;这里以第一列“地层时代”为例,列名称直接输入“地层时代”,列内容中,列类型选择【钻孔柱状图】,图案选择【地层/岩土材料图例】,插入字段选择【表格属性-数据】中的【地层描述】,即后续地层时代在地层描述中输入即可。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230521618829.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;其他列类似操作,需要注意的是,当需要选择深度坐标轴时,比如“地层柱状”和“岩芯采取率”左侧均有深度坐标,列的名称可以留空,列内容直接在类型中选择【深度坐标轴】。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230542304748.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;当输入列内容为“岩芯采取率”和“电测深曲线”时,列类型注意选择【深度图标】,在【添加系列】时选择相应的内容。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230568103826.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;当列定义完成后,如下图所示。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230586935917.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据表格样式,调整每列的相对宽度,得到更美观的表格样式。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230604922706.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;自此,整个出图样式就定义完成,将出图规程的名称定义为“水文钻孔”,规程类别选择【柱状剖面】。</p><p>2 录入数据</p><p>&nbsp; &nbsp; &nbsp; &nbsp;在【勘察数据】中录入水文钻孔的数据信息,点击【添加】,选择【水井】,在弹出的窗口中录入相关信息,可以看到自定义的钻孔信息、岩芯采取率和电测深曲线都在目录内。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230635605573.png" alt="image.png"/></p><p>2.1 录入基础信息</p><p>&nbsp; &nbsp; &nbsp; &nbsp;录入钻孔信息,直接输入文字或者数字。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230653430702.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;录入地层信息,输入不同深度的的岩土材料,选择相应的颜色和花纹,地层描述中备注地质年代。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230677639568.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;录入成井结构的花纹样式,可以在图例中选择类似的样式,也可以用纯色的形式模拟。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230697626068.png" alt="image.png"/></p><p>2.2 录入深度数据</p><p>&nbsp; &nbsp; &nbsp; &nbsp;对于岩芯采取率和电测深曲线,需要录入随深度的变化数据,这里可以导入excel数据或者进行单个录入。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230716250387.png" alt="image.png"/></p><p>3 出图效果</p><p>&nbsp; &nbsp; &nbsp; &nbsp;录入完数据后,保存信息,到【柱状剖面】界面中,选中该钻孔,选择【打印日志】,即可得到柱状图。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230742130746.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;柱状图效果如下,对于填充效果、文字大小和线性属性还可以在模板中人为调整。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724230782133094.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;图件可以保存为PDF或者word格式,其他的钻孔录入数据后,就可以用已经定义好的模版进行批量的出图。</p>

GEO5重力式挡墙——导入CAD图形

库仑产品库仑刘工 发表了文章 • 0 个评论 • 1264 次浏览 • 2024-01-31 16:37 • 来自相关话题

GEO5重力式挡墙——导入CAD图形GEO5重力式挡墙模块可以自定义挡墙样式,很多工程师反馈,想要在GEO5里面直接导入画好的CAD图形,目前GEO5企业版中已经能够导入dwg、dxf格式的图形,也能够通过导入坐标点的方式创建挡墙。cad挡墙案例文件.zip GEO5导入挡墙尺寸示意1.导入CAD图形 在CAD里面用多段线绘制挡墙,并把挡墙右上方的顶点移动到坐标原点,保存。 在【墙身截面尺寸】下面选择“?”或“生成任意形状”,在下拉框下面选择“导入数据”选项。 在弹窗的右下角选择对应的图形格式,选中挡墙图形。点击“打开”。 尺寸单位与CAD里面保持一致,CAD里面是mm这里也选mm,CAD里面是m,这里也选m。移动选项,一定要选不偏移。确定之后即可导入挡墙样式。 导入成功2. 导入坐标点类似导入CAD的操作,只是读取CAD图中的坐标点。把挡墙的xy坐标按图中示意,从①到⑩顺时针排列(可以在Excel中输好,复制到记事本中,保存为TXT格式)。  根据提示依次进行操作即可,不再赘述。3. 验算说明自定义挡墙样式的【截面强度验算】不再有墙身截面验算选项,仅保留【施工缝验算】。施工缝验算本质是指定任一位置进行截面强度验算,可以验算挡墙不同高度位置的截面强度,可以将施工缝深度指定在挡墙变截面和基础位置等不利位置。另外,导入的挡墙以最下面的线段作为基底,即图中紫色加粗的线。导入时,请不要导入凸榫结构。重力式挡土墙主要还是应该靠墙身自重来实现抗滑移、抗倾覆功能,建议凸榫当做构造措施放在施工图里面。  截面强度验算  查看全部
<h1><strong>GEO5重力式挡墙——导入CAD图形</strong></h1><p>GEO5重力式挡墙模块可以自定义挡墙样式,很多工程师反馈,想要在GEO5里面直接导入画好的CAD图形,目前GEO5企业版中已经能够导入dwg、dxf格式的图形,也能够通过导入坐标点的方式创建挡墙。<img src="https://wen.kulunsoft.com/stat ... ot%3B style="vertical-align: middle; margin-right: 2px;"/><a href="https://wen.kulunsoft.com/uplo ... ot%3B title="cad挡墙案例文件.zip" style="font-size: 12px; color: rgb(0, 102, 204);">cad挡墙案例文件.zip</a></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1706689977564709.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">GEO5导入挡墙尺寸示意</p><h2><strong>1.导入CAD图形</strong></h2><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1706690019465245.png" alt="image.png"/>&nbsp;</p><p>在CAD里面用多段线绘制挡墙,并把挡墙右上方的顶点移动到坐标原点,保存。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1706690035256849.png" alt="image.png"/>&nbsp;</p><p>在【墙身截面尺寸】下面选择“?”或“生成任意形状”,在下拉框下面选择“导入数据”选项。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1706690057433759.png" alt="image.png"/>&nbsp;</p><p>在弹窗的右下角选择对应的图形格式,选中挡墙图形。点击“打开”。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1706690071161876.png" alt="image.png"/>&nbsp;</p><p>尺寸单位与CAD里面保持一致,CAD里面是mm这里也选mm,CAD里面是m,这里也选m。<strong>移动选项,一定要选不偏移。</strong>确定之后即可导入挡墙样式。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1706690089197804.png" alt="image.png"/>&nbsp;</p><p>导入成功</p><h2>2.&nbsp;<strong>导入坐标点</strong></h2><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1706690151254171.png" alt="image.png"/></p><p>类似导入CAD的操作,只是读取CAD图中的坐标点。把挡墙的xy坐标按图中示意,从①到⑩顺时针排列(可以在Excel中输好,复制到记事本中,保存为TXT格式)。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1706690163637165.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1706690171892487.png" alt="image.png"/>&nbsp;</p><p>根据提示依次进行操作即可,不再赘述。</p><h2>3.&nbsp;<strong>验算说明</strong></h2><p>自定义挡墙样式的【截面强度验算】不再有墙身截面验算选项,仅保留【施工缝验算】。施工缝验算本质是指定任一位置进行截面强度验算,可以验算挡墙不同高度位置的截面强度,可以将施工缝深度指定在挡墙变截面和基础位置等不利位置。</p><p>另外,导入的挡墙以最下面的线段作为基底,即图中<strong>紫色加粗</strong>的线。导入时,请不要导入凸榫结构。重力式挡土墙主要还是应该靠墙身自重来实现抗滑移、抗倾覆功能,建议凸榫当做构造措施放在施工图里面。</p><p>&nbsp;</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1706690183350456.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">截面强度验算</p><p>&nbsp;</p><p><br/></p>

GEO5法标梅纳法(Menard)深基坑计算案例

库仑产品南京库仑张工 发表了文章 • 0 个评论 • 1207 次浏览 • 2023-03-21 12:02 • 来自相关话题

       在深基坑分析计算中,水平反力系数的取值对于围护结构的变形影响较大,国内项目一般按照规范采用m法、K法取值,海外项目根据选取规范不同方法也各异,比如欧标采用施密特法(Schmitt)或者查德森法(Chadeisson),法标采用梅纳法(Menard)。本文以实际案例介绍梅纳法在深基坑分析中的应用。1、梅纳法介绍       该方法基于旁压试验的测量结果,得到计算土的水平反力系数的表达式为:其中:       EM为旁压模量,单位MPa;       a为以固支结构底端深度为依据的特征长度,根据Menard假设,位于坑底以下2/3结构嵌固深度处 [m],可参考下图截图示意:       α为岩土流变系数,针对不同土体,该系数的取值建议如下:2、计算所需参数指标       根据梅纳法的定义,计算水平反力系数主要需要旁压模量和岩土流变系数两个参数,这两个参数,在按照法标执行的勘察项目中都能获取,例如本案例:3、基坑分析计算       第一步根据勘察资料,导入不同深度旁压模量数据       第二步在岩土材料参数中输入土体常规指标以及流变系数       第三步按照常规基坑分析方法分部开挖、添加支撑结构。       最后得到该基坑开挖计算的变形和土压力计算结果如下:围护结构受力如下: 查看全部
<p style="text-align: left;">&nbsp; &nbsp; &nbsp; &nbsp;在深基坑分析计算中,水平反力系数的取值对于围护结构的变形影响较大,国内项目一般按照规范采用m法、K法取值,海外项目根据选取规范不同方法也各异,比如欧标采用施密特法(Schmitt)或者查德森法(Chadeisson),法标采用梅纳法(Menard)。本文以实际案例介绍梅纳法在深基坑分析中的应用。</p><p>1、梅纳法介绍</p><p>&nbsp; &nbsp; &nbsp; &nbsp;该方法基于旁压试验的测量结果,得到计算土的水平反力系数的表达式为:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1679379438139743.png" alt="image.png" width="190" height="57" style="width: 190px; height: 57px;"/></p><p>其中:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;E<sub>M</sub>为旁压模量,单位MPa;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;a为以固支结构底端深度为依据的特征长度,根据Menard假设,位于坑底以下2/3结构嵌固深度处 [m],可参考下图截图示意:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1679379458959045.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;α为岩土流变系数,针对不同土体,该系数的取值建议如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1679379480695468.png" alt="image.png" width="370" height="74" style="width: 370px; height: 74px;"/></p><p>2、计算所需参数指标</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据梅纳法的定义,计算水平反力系数主要需要旁压模量和岩土流变系数两个参数,这两个参数,在按照法标执行的勘察项目中都能获取,例如本案例:</p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1679379505216984.png" alt="image.png"/></p><p>3、基坑分析计算</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第一步根据勘察资料,导入不同深度旁压模量数据</p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1679379530722287.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;第二步在岩土材料参数中输入土体常规指标以及流变系数</p><p style="text-align: left;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1679379555842134.png" alt="image.png" width="364" height="333" style="width: 364px; height: 333px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;第三步按照常规基坑分析方法分部开挖、添加支撑结构。</p><p><br/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;最后得到该基坑开挖计算的变形和土压力计算结果如下:</p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1679379590858542.png" alt="image.png"/></p><p>围护结构受力如下:</p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1679379606765122.png" alt="image.png"/></p><p><br/></p>

GEO5土坡模块网格搜索使用方法

库仑产品南京库仑张工 发表了文章 • 0 个评论 • 1291 次浏览 • 2023-02-22 11:23 • 来自相关话题

       在GEO5土坡模块中,滑面搜索方法包括自动搜索和网格搜索,其中自动搜索可以对圆弧滑动、折线滑动进行搜索计算,见文章GEO5「土质边坡稳定分析模块」中圆弧和折线滑面搜索教程,网格搜索则主要针对圆弧滑动。在GEO5 2023版当中,对网格搜索方法做了进一步的优化,本文将作简要介绍。1、网格参数设置       如上图所示,当用户选择网格搜索时,有7个参数可以设置,分别是δx(x方向圆心步长),δz(z方向圆心步长),δR(搜索半径步长),旋转角α以及nx(x方向的一侧网格数量),nz(z方向的一侧网格数量)和nR(半径数量)。       以上图为例,取nx=10,nz=10,nR=4,那么软件实际计算滑动面个数=(2*10+1)*(2*10+1)*4=1764个滑面,有的时候设置的圆心半径并不能和模型的地形相交,所以实际滑面个数略小于上值。2、2023版网格加密方法       当使用网格搜索最危险滑面时,一般操作方法是先选用粗网格,然后再加密网格,但在原来的版本中,加密得人工调整参数,且不能替换原有搜索结果。最新的GEO5 2023版本,增加了“加密网格”功能,点击后,软件默认按原有参数(x、z方向圆心步长及半径步长)的二分之一设置新的参数,新的搜索可以直接替换掉当前搜索结果,也可以保存到新的分析工况当中。       加密操作可以持续进行,比如四个工况可以按照x、z方向步长2m-1m-0.5m-0.25m不断加密的操作,半径步长类似。3、网格搜索的使用步骤(1)指定初始滑面:       跟自动搜索类似,网格搜索也需要指定初始滑面位置。初始指定的滑面位置不同,可能会出现搜索陷入局部极值的情况,但网格搜索可以通过由粗到细的过程避免初始滑面位置的影响。(2)加密网格:       在粗网格的基础上进行加密计算。(3)筛选滑动面:       网格加密到合适大小,最小稳定系数不再发生变化时,即可不用进一步加密网格。这时候会发现坡体内的滑动面有很多,而且大部分是大于设计安全系数的滑面,这部分滑面可以通过筛选的方法隐藏。选择界面上的扳手,点击后可以设置安全系数的最大值,比如设置为1.35。       之后,软件会自动剔除掉稳定系数大于1.35的滑面。 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp;在GEO5土坡模块中,滑面搜索方法包括自动搜索和网格搜索,其中自动搜索可以对圆弧滑动、折线滑动进行搜索计算,见文章<a href="https://wen.kulunsoft.com/arti ... BGEO5「土质边坡稳定分析模块」中圆弧和折线滑面搜索教程</a>,网格搜索则主要针对圆弧滑动。在GEO5 2023版当中,对网格搜索方法做了进一步的优化,本文将作简要介绍。</p><p>1、网格参数设置</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1705971793653601.png" alt="image.png" width="267" height="228" style="width: 267px; height: 228px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;如上图所示,当用户选择网格搜索时,有7个参数可以设置,分别是δx(x方向圆心步长),δz(z方向圆心步长),δR(搜索半径步长),旋转角α以及nx(x方向的一侧网格数量),nz(z方向的一侧网格数量)和nR(半径数量)。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;以上图为例,取nx=10,nz=10,nR=4,那么软件实际计算滑动面个数=(2*10+1)*(2*10+1)*4=1764个滑面,有的时候设置的圆心半径并不能和模型的地形相交,所以实际滑面个数略小于上值。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1705971814793654.png" alt="image.png" width="402" height="345" style="width: 402px; height: 345px;"/></p><p>2、2023版网格加密方法</p><p>&nbsp; &nbsp; &nbsp; &nbsp;当使用网格搜索最危险滑面时,一般操作方法是先选用粗网格,然后再加密网格,但在原来的版本中,加密得人工调整参数,且不能替换原有搜索结果。最新的GEO5 2023版本,增加了“加密网格”功能,点击后,软件默认按原有参数(x、z方向圆心步长及半径步长)的二分之一设置新的参数,新的搜索可以直接替换掉当前搜索结果,也可以保存到新的分析工况当中。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;加密操作可以持续进行,比如四个工况可以按照x、z方向步长2m-1m-0.5m-0.25m不断加密的操作,半径步长类似。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1705971832234711.png" alt="image.png" width="477" height="347" style="width: 477px; height: 347px;"/></p><p>3、网格搜索的使用步骤</p><p>(1)指定初始滑面:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;跟自动搜索类似,网格搜索也需要指定初始滑面位置。初始指定的滑面位置不同,可能会出现搜索陷入局部极值的情况,但网格搜索可以通过由粗到细的过程避免初始滑面位置的影响。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1705971851805073.png" alt="image.png" width="476" height="261" style="width: 476px; height: 261px;"/></p><p>(2)加密网格:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;在粗网格的基础上进行加密计算。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1705971875649347.png" alt="image.png" width="472" height="303" style="width: 472px; height: 303px;"/></p><p>(3)筛选滑动面:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;网格加密到合适大小,最小稳定系数不再发生变化时,即可不用进一步加密网格。这时候会发现坡体内的滑动面有很多,而且大部分是大于设计安全系数的滑面,这部分滑面可以通过筛选的方法隐藏。</p><p>选择界面上的扳手,点击后可以设置安全系数的最大值,比如设置为1.35。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1705971896898080.png" alt="image.png" width="261" height="325" style="width: 261px; height: 325px;"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1705971926813376.png" alt="image.png" width="455" height="284" style="width: 455px; height: 284px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;之后,软件会自动剔除掉稳定系数大于1.35的滑面。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1705971947901557.png" alt="image.png"/></p><p><br/></p>

GEO5土坡模块采用Hoek-Brown准则计算岩坡稳定性的方法

库仑产品南京库仑张工 发表了文章 • 0 个评论 • 1291 次浏览 • 2022-12-27 11:07 • 来自相关话题

       GEO5 2023版支持在土坡模块中采用Hoek-Brown经验公式,输入岩石材料参数,计算岩质边坡稳定性。1、Hoek-Brown准则       岩体是由岩块和结构面组成的地质体,岩体强度既与岩块和结构面的强度相关,也受其组合形式控制。对于大型项目,岩体强度的确定可以采用现场原位试验获得;而一般项目,则是通过现场调查得到的地质资料结合室内试验进行综合评估。Hoek-Brown准则就是在大量的岩石试验基础上,基于地质强度指标法(GSI),建立的岩体强度与地质条件中的某些因素间的经验关系,可以表示为:       其中,是破坏时最大主应力,是破坏时最小主应力,为完整岩块的单轴抗压强度,为岩体材料参数,与岩石性质有关,S和a为与岩体结构特征有关的材料参数。       在确定地质强度指标GSI的基础上,、S、a三个参数可以表示为估算公式:       其中,为完整岩石的材料强度参数,取值范围为0~35,严重破碎岩体取0,坚硬完整岩体取35;GSI为地质强度指标,由岩体不连续结构面性质和岩体构造确定,取值范围为0~100;D为岩体开挖扰动系数,受爆破及应力松弛的扰动影响,取值范围为0~1,0表示岩体未收到扰动影响,1表示岩体受到最大程度影响。2、GEO5中输入Hoek-Brown参数的方法       在2023版的GEO5土坡模块中,允许用户在岩土材料中采用两种方式输入Hoek-Brown参数,一种方式是直接输入、S、a三个参数,另一种是通过GSI参数确定,那么输入GSI、D、三个参数。       不管采用何种方法输入Hoek-Brown参数,都需要统一输入岩体的天然重度、饱和重度和岩石单轴抗压强度。图1:选择“输入”,直接输入、S、a等参数图2:选择“由GSI参数确定”,输入GSI、D、等参数3、案例说明       某岩质边坡高约10m,坡面倾角约30°,岩体结构面发育,坡体呈碎裂状,根据现场地质调查,确定岩体Hoek-Brown参数,S=0.000026,a=0.62。岩体天然重度20kN/m³,饱和重度22 kN/m³,岩石单轴抗压强度为30MPa。       根据以上参数在GEO5中建立计算模型,并输入相关材料参数。图3:计算模型       采用Janbu法进行滑面的自动搜索,得到滑面最小安全系数1.49。图4:稳定性计算结果       GEO5采用Hoek-Brown参数计算岩体边坡稳定性的本质,是将相关的参数转化为了Mohr-Coulomb准则所用的内摩擦角和粘聚力参数,然后按极限平衡方法计算得到最终的结果。       根据Hoek在2002年提出的方法,、S、a三参数可以按如下方法转化为内摩擦角和粘聚力:       参考以上公式,本案例Hoek-Brown参数等效为Mohr-Coulomb参数后,内摩擦角为26.58°,黏聚力为13.24kPa。       重新指定Mohr-Coulomb材料参数后,原边坡稳定性计算安全系数为1.49,跟采用Hoek-Brown材料参数计算结果一致。图5:换算为Mohr-Coulomb材料参数后的计算结果 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp;GEO5 2023版支持在土坡模块中采用Hoek-Brown经验公式,输入岩石材料参数,计算岩质边坡稳定性。</p><p>1、Hoek-Brown准则</p><p>&nbsp; &nbsp; &nbsp; &nbsp;岩体是由岩块和结构面组成的地质体,岩体强度既与岩块和结构面的强度相关,也受其组合形式控制。对于大型项目,岩体强度的确定可以采用现场原位试验获得;而一般项目,则是通过现场调查得到的地质资料结合室内试验进行综合评估。Hoek-Brown准则就是在大量的岩石试验基础上,基于地质强度指标法(GSI),建立的岩体强度与地质条件中的某些因素间的经验关系,可以表示为:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672109717839350.png" alt="image.png" width="184" height="50" style="width: 184px; height: 50px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;其中,<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672109759290747.png" alt="image.png" width="22" height="20" style="width: 22px; height: 20px;"/>是破坏时最大主应力,<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672109786879116.png" alt="image.png" width="21" height="22" style="width: 21px; height: 22px;"/>是破坏时最小主应力,<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672109819925200.png" alt="image.png" width="20" height="19" style="width: 20px; height: 19px;"/>为完整岩块的单轴抗压强度,<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672109863339916.png" alt="image.png" width="27" height="20" style="width: 27px; height: 20px;"/>为岩体材料参数,与岩石性质有关,S和a为与岩体结构特征有关的材料参数。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;在确定地质强度指标GSI的基础上,<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672109898369372.png" alt="image.png" width="20" height="15" style="width: 20px; height: 15px;"/>、S、a三个参数可以表示为估算公式:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672109927576614.png" alt="image.png" width="176" height="130" style="width: 176px; height: 130px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;其中,<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672109971743103.png" alt="image.png" width="30" height="20" style="width: 30px; height: 20px;"/>为完整岩石的材料强度参数,取值范围为0~35,严重破碎岩体取0,坚硬完整岩体取35;GSI为地质强度指标,由岩体不连续结构面性质和岩体构造确定,取值范围为0~100;D为岩体开挖扰动系数,受爆破及应力松弛的扰动影响,取值范围为0~1,0表示岩体未收到扰动影响,1表示岩体受到最大程度影响。</p><p>2、GEO5中输入Hoek-Brown参数的方法</p><p>&nbsp; &nbsp; &nbsp; &nbsp;在2023版的GEO5土坡模块中,允许用户在岩土材料中采用两种方式输入Hoek-Brown参数,一种方式是直接输入<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672110012812064.png" alt="image.png" width="21" height="18" style="width: 21px; height: 18px;"/>、S、a三个参数,另一种是通过GSI参数确定,那么输入GSI、D、<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672110034189229.png" alt="image.png" width="25" height="19" style="width: 25px; height: 19px;"/>三个参数。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;不管采用何种方法输入Hoek-Brown参数,都需要统一输入岩体的天然重度、饱和重度和岩石单轴抗压强度<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672110064159226.png" alt="image.png" width="22" height="18" style="width: 22px; height: 18px;"/>。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672110099813050.png" alt="image.png"/></p><p style="text-align: center;">图1:选择“输入”,直接输入<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672110140523430.png" alt="image.png" width="22" height="16" style="width: 22px; height: 16px;"/>、S、a等参数</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672110159217756.png" alt="image.png"/></p><p style="text-align: center;">图2:选择“由GSI参数确定”,输入GSI、D、<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672110186940606.png" alt="image.png" width="27" height="17" style="width: 27px; height: 17px;"/>等参数</p><p>3、案例说明</p><p>&nbsp; &nbsp; &nbsp; &nbsp;某岩质边坡高约10m,坡面倾角约30°,岩体结构面发育,坡体呈碎裂状,根据现场地质调查,确定岩体Hoek-Brown参数<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672110223813932.png" alt="image.png" width="80" height="18" style="width: 80px; height: 18px;"/>,S=0.000026,a=0.62。岩体天然重度20kN/m³,饱和重度22 kN/m³,岩石单轴抗压强度为30MPa。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据以上参数在GEO5中建立计算模型,并输入相关材料参数。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672110260188484.png" alt="image.png" width="378" height="225" style="width: 378px; height: 225px;"/></p><p style="text-align: center;">图3:计算模型</p><p>&nbsp; &nbsp; &nbsp; &nbsp;采用Janbu法进行滑面的自动搜索,得到滑面最小安全系数1.49。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672110292725293.png" alt="image.png"/></p><p style="text-align: center;">图4:稳定性计算结果</p><p>&nbsp; &nbsp; &nbsp; &nbsp;GEO5采用Hoek-Brown参数计算岩体边坡稳定性的本质,是将相关的参数转化为了Mohr-Coulomb准则所用的内摩擦角和粘聚力参数,然后按极限平衡方法计算得到最终的结果。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据Hoek在2002年提出的方法,<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672110331910050.png" alt="image.png" width="30" height="21" style="width: 30px; height: 21px;"/>、S、a三参数可以按如下方法转化为内摩擦角和粘聚力:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672110350595760.png" alt="image.png" width="325" height="126" style="width: 325px; height: 126px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;参考以上公式,本案例Hoek-Brown参数等效为Mohr-Coulomb参数后,内摩擦角为26.58°,黏聚力为13.24kPa。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;重新指定Mohr-Coulomb材料参数后,原边坡稳定性计算安全系数为1.49,跟采用Hoek-Brown材料参数计算结果一致。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672110390913619.png" alt="image.png"/></p><p style="text-align: center;">图5:换算为Mohr-Coulomb材料参数后的计算结果</p>

GEO5黄土地区高边坡支挡结构设计案例

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 1284 次浏览 • 2022-11-03 12:07 • 来自相关话题

1.项目简介       西北某路基高边坡,先挖后填,挖方边坡直接削掉坡顶,然后再一侧冲沟中回填以扩大路基宽度,填方边坡高度大于40m,场地出露地层以马兰黄土、离石黄土和古土壤为主。       填方边坡采用抗滑桩+加筋土联合支挡,抗滑桩尺寸按3.5m*2.5m矩形桩设计,桩长35m,其中悬臂段约11m,桩间距4m,桩身最大抗滑承载能力Vu取7200kN。上部加筋土边坡按四级台阶放坡,总体坡率近1:1.1,每级台阶边坡高度8m~10m。筋材采用设计抗拉强度25kN/m的筋带,筋带布置间距0.4m,最长敷设长度49m。图1:原始边坡模型       采用GEO5土坡模块分析,可以考虑抗滑桩和加筋土联合支挡的作用,通过多工况分析比对明确支护设计思路。2.岩土材料参数3、各工况稳定性分析图2:边坡开挖后整体稳定性计算图3:未加任何支护填方边坡整体稳定性计算图4:加抗滑桩后填方边坡整体稳定性计算图5:抗滑桩+加筋土填方边坡整体稳定性计算4、分析结论        原始边坡开挖后整体稳定性满足要求,但在一侧填方后边坡稳定性较差。通过同一滑动面的整体稳定性分析可以得到:在填方后,边坡整体稳定性很差,安全系数很低;在加上抗滑桩后,提高了整体安全性,但仍处于不稳定状态;当在填土中添加筋带后,最终计算安全系数达到设计安全系数要求。 查看全部
<p>1.项目简介</p><p>&nbsp; &nbsp; &nbsp; &nbsp;西北某路基高边坡,先挖后填,挖方边坡直接削掉坡顶,然后再一侧冲沟中回填以扩大路基宽度,填方边坡高度大于40m,场地出露地层以马兰黄土、离石黄土和古土壤为主。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;填方边坡采用抗滑桩+加筋土联合支挡,抗滑桩尺寸按3.5m*2.5m矩形桩设计,桩长35m,其中悬臂段约11m,桩间距4m,桩身最大抗滑承载能力Vu取7200kN。上部加筋土边坡按四级台阶放坡,总体坡率近1:1.1,每级台阶边坡高度8m~10m。筋材采用设计抗拉强度25kN/m的筋带,筋带布置间距0.4m,最长敷设长度49m。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667448243702848.png" alt="image.png" width="446" height="185" style="width: 446px; height: 185px;"/></p><p style="text-align: center;">图1:原始边坡模型</p><p>&nbsp; &nbsp; &nbsp; &nbsp;采用GEO5土坡模块分析,可以考虑抗滑桩和加筋土联合支挡的作用,通过多工况分析比对明确支护设计思路。</p><p>2.岩土材料参数</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667448283360028.png" alt="image.png" width="445" height="184" style="width: 445px; height: 184px;"/></p><p>3、各工况稳定性分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667448325573620.png" alt="image.png" width="460" height="218" style="width: 460px; height: 218px;"/></p><p style="text-align: center;">图2:边坡开挖后整体稳定性计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667448358508604.png" alt="image.png" width="469" height="197" style="width: 469px; height: 197px;"/></p><p style="text-align: center;">图3:未加任何支护填方边坡整体稳定性计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667448377447822.png" alt="image.png" width="468" height="187" style="width: 468px; height: 187px;"/></p><p style="text-align: center;">图4:加抗滑桩后填方边坡整体稳定性计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667448410460726.png" alt="image.png" width="482" height="175" style="width: 482px; height: 175px;"/></p><p style="text-align: center;">图5:抗滑桩+加筋土填方边坡整体稳定性计算</p><p>4、分析结论</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 原始边坡开挖后整体稳定性满足要求,但在一侧填方后边坡稳定性较差。通过同一滑动面的整体稳定性分析可以得到:在填方后,边坡整体稳定性很差,安全系数很低;在加上抗滑桩后,提高了整体安全性,但仍处于不稳定状态;当在填土中添加筋带后,最终计算安全系数达到设计安全系数要求。</p>

GEO5抗滑桩斜截面抗剪承载能力计算方法

库仑产品南京库仑张工 发表了文章 • 5 个评论 • 1794 次浏览 • 2022-11-03 11:54 • 来自相关话题

1、单排桩斜截面抗剪承载能力计算       对于单排抗滑桩,按受弯构件考虑,参考《混凝土结构设计规范》(GB50010-2010)6.3.4节:其中,为斜截面混凝土受剪承载力系数,对于一般受弯构件取0.7。       上面的公式适用于矩形桩,当抗滑桩为圆形结构时,参考混规6.3.15节,上述公式中的截面宽度b和截面有效高度应分别以1.76 r和1.6 r 代替,r为圆形截面半径,如果使用截面直径d来表示,上述公式可改写为:2、双排桩斜截面抗剪承载能力计算       对于双排抗滑桩,每根抗滑桩的斜截面抗剪承载能力不能直接按章节1中受弯构建计算,因为双排桩组合结构中,桩身不仅受到弯剪作用,同时还有轴力作用,前排桩往往受压,后排桩往往受拉,所以应参考混规6.3.13节和6.3.14节进行计算,具体条文跟公式截取如下:对于圆形截面,偏心受压斜截面承载力计算公式可写为:偏心受拉斜截面承载力计算公式可写为:由此可见,跟单排桩的最大区别在于受拉和受压构件考虑了轴力对承载能力的影响。3、工程实例(1)单排桩       某边坡支护,若采用单排抗滑桩,桩长20m,桩径2.8m,桩间距6m,桩后滑坡推力2000kN/m,滑面深度5m。GEO5计算得到的截面强度如下:手算斜截面承载能力:手算结果跟GEO5计算结果一致。(2)双排桩       同上一个边坡,如果采用双排桩支护,前后排桩桩长均为20m,桩径2.8m,桩间距6m,连梁采用2m*2m的矩形梁。       GEO5计算得到的截面强度如下:前排桩截面强度:后排桩截面强度:手算前排桩斜截面承载能力,按偏心受压考虑:后排桩斜截面承载能力,按偏心受拉考虑:手算结果和GEO5计算一致。 查看全部
<p>1、单排桩斜截面抗剪承载能力计算</p><p>&nbsp; &nbsp; &nbsp; &nbsp;对于单排抗滑桩,按受弯构件考虑,参考《混凝土结构设计规范》(GB50010-2010)6.3.4节:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667447062776449.png" alt="image.png" width="172" height="34" style="width: 172px; height: 34px;"/></p><p>其中,<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667447105907535.png" alt="image.png" width="19" height="17" style="width: 19px; height: 17px;"/>为斜截面混凝土受剪承载力系数,对于一般受弯构件取0.7。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;上面的公式适用于矩形桩,当抗滑桩为圆形结构时,参考混规6.3.15节,上述公式中的截面宽度b和截面有效高度<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667447138152676.png" alt="image.png" width="19" height="17" style="width: 19px; height: 17px;"/>应分别以1.76 r和1.6 r 代替,r为圆形截面半径,如果使用截面直径d来表示,上述公式可改写为:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667447170433227.png" alt="image.png" width="249" height="33" style="width: 249px; height: 33px;"/></p><p>2、双排桩斜截面抗剪承载能力计算</p><p>&nbsp; &nbsp; &nbsp; &nbsp;对于双排抗滑桩,每根抗滑桩的斜截面抗剪承载能力不能直接按章节1中受弯构建计算,因为双排桩组合结构中,桩身不仅受到弯剪作用,同时还有轴力作用,前排桩往往受压,后排桩往往受拉,所以应参考混规6.3.13节和6.3.14节进行计算,具体条文跟公式截取如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667447204522722.png" alt="image.png" width="425" height="141" style="width: 425px; height: 141px;"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667447221358933.png" alt="image.png" width="417" height="132" style="width: 417px; height: 132px;"/></p><p>对于圆形截面,偏心受压斜截面承载力计算公式可写为:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667447245250915.png" alt="image.png" width="277" height="33" style="width: 277px; height: 33px;"/></p><p>偏心受拉斜截面承载力计算公式可写为:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667447306537984.png" alt="image.png" width="288" height="32" style="width: 288px; height: 32px;"/></p><p>由此可见,跟单排桩的最大区别在于受拉和受压构件考虑了轴力对承载能力的影响。</p><p>3、工程实例</p><p>(1)单排桩</p><p>&nbsp; &nbsp; &nbsp; &nbsp;某边坡支护,若采用单排抗滑桩,桩长20m,桩径2.8m,桩间距6m,桩后滑坡推力2000kN/m,滑面深度5m。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667447377485805.png" alt="image.png" width="512" height="152" style="width: 512px; height: 152px;"/></p><p>GEO5计算得到的截面强度如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667447414810997.png" alt="image.png" width="311" height="273" style="width: 311px; height: 273px;"/></p><p>手算斜截面承载能力:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667447447598039.png" alt="image.png" width="485" height="95" style="width: 485px; height: 95px;"/></p><p>手算结果跟GEO5计算结果一致。</p><p>(2)双排桩</p><p>&nbsp; &nbsp; &nbsp; &nbsp;同上一个边坡,如果采用双排桩支护,前后排桩桩长均为20m,桩径2.8m,桩间距6m,连梁采用2m*2m的矩形梁。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;GEO5计算得到的截面强度如下:</p><p>前排桩截面强度:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667447552250030.png" alt="image.png" width="306" height="242" style="width: 306px; height: 242px;"/></p><p>后排桩截面强度:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667447528257833.png" alt="image.png" width="308" height="241" style="width: 308px; height: 241px;"/></p><p>手算前排桩斜截面承载能力,按偏心受压考虑:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667447586813150.png" alt="image.png" width="386" height="106" style="width: 386px; height: 106px;"/></p><p>后排桩斜截面承载能力,按偏心受拉考虑:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667447641747117.png" alt="image.png" width="377" height="113" style="width: 377px; height: 113px;"/></p><p>手算结果和GEO5计算一致。</p><p><br/></p>

GEO5某加筋土石笼挡墙稳定性及数值分析

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 1383 次浏览 • 2022-11-03 11:43 • 来自相关话题

1.项目简介       某公路路基填方工程采用加筋土石笼挡墙支护,路堤高25m,采用砂砾石层无黏性土回填,下伏原状地层为强风化砂岩。       石笼采用高度为1m,宽度为0.8m的网箱结构,每层偏移0.2m,总共25层,层间铺设筋带,筋带最大长度18,最小长度7m,筋带抗拉强度为150kN/m。路面考虑20kPa车辆均布荷载。       采用GEO5石笼挡墙模块,可以实现石笼挡墙后加筋带分析,除了计算整体倾覆滑移和筋带的抗拉抗拔,还可以验算石笼挡墙局部稳定性和网箱结构稳定性;通过GEO5有限元,还可以进一步分析高填方路堤边坡应力应变,筋带受力分布情况。图1:基本模型2、石笼挡墙模块分析图2:倾覆滑移计算图3:石笼局部稳定性和网箱结构验算图4:整体圆弧稳定性计算3、有限元分析图5:主应力分析图6:剪应变分析图7:筋带力及分布计算4、分析结论       通过以上分析可以得到:高填方边坡整体稳定性、倾覆滑移稳定性满足设计要求,局部稳定性满足,但坡脚区域安全储备略低;通过数值分析,可以判断坡脚区域应力较为集中,剪切应变略大,坡脚区域应做好防护工作。 查看全部
<p>1.项目简介</p><p>&nbsp; &nbsp; &nbsp; &nbsp;某公路路基填方工程采用加筋土石笼挡墙支护,路堤高25m,采用砂砾石层无黏性土回填,下伏原状地层为强风化砂岩。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;石笼采用高度为1m,宽度为0.8m的网箱结构,每层偏移0.2m,总共25层,层间铺设筋带,筋带最大长度18,最小长度7m,筋带抗拉强度为150kN/m。路面考虑20kPa车辆均布荷载。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;采用GEO5石笼挡墙模块,可以实现石笼挡墙后加筋带分析,除了计算整体倾覆滑移和筋带的抗拉抗拔,还可以验算石笼挡墙局部稳定性和网箱结构稳定性;通过GEO5有限元,还可以进一步分析高填方路堤边坡应力应变,筋带受力分布情况。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667446364814969.png" alt="image.png" width="438" height="208" style="width: 438px; height: 208px;"/></p><p style="text-align: center;">图1:基本模型</p><p>2、石笼挡墙模块分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667446388697717.png" alt="image.png" width="462" height="231" style="width: 462px; height: 231px;"/></p><p style="text-align: center;">图2:倾覆滑移计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667446423201494.png" alt="image.png" width="476" height="281" style="width: 476px; height: 281px;"/></p><p style="text-align: center;">图3:石笼局部稳定性和网箱结构验算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667446461629945.png" alt="image.png" width="461" height="287" style="width: 461px; height: 287px;"/></p><p style="text-align: center;">图4:整体圆弧稳定性计算</p><p>3、有限元分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667446489583782.png" alt="image.png" width="469" height="228" style="width: 469px; height: 228px;"/></p><p style="text-align: center;">图5:主应力分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667446517627383.png" alt="image.png" width="458" height="233" style="width: 458px; height: 233px;"/></p><p style="text-align: center;">图6:剪应变分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667446553409420.png" alt="image.png" width="425" height="366" style="width: 425px; height: 366px;"/></p><p style="text-align: center;">图7:筋带力及分布计算</p><p>4、分析结论</p><p>&nbsp; &nbsp; &nbsp; &nbsp;通过以上分析可以得到:高填方边坡整体稳定性、倾覆滑移稳定性满足设计要求,局部稳定性满足,但坡脚区域安全储备略低;通过数值分析,可以判断坡脚区域应力较为集中,剪切应变略大,坡脚区域应做好防护工作。</p>

GEO5某园区高填方边坡支挡结构设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 1174 次浏览 • 2022-11-03 11:31 • 来自相关话题

1.项目简介       某园区东南侧为早期的开挖边坡,边坡高30m,地层以粉质黏土和黏土为主,局部区域地表为素填土。因场地功能设计要求,需在原多级开挖边坡基础上,重新回填,形成两级回填边坡。       回填边坡采用桩板墙+锚索设计,上台阶桩长30m,设置5道锚索,锚索预应力分别为180kN、200kN、200kN、200kN、200kN;下台阶桩长30m,设置7道锚索,锚索预应力分别为300kN、400kN、400kN、450kN、450kN、500kN、500kN。       采用GEO5土坡模块分析,可以考虑抗滑桩和锚索联合支挡的作用,通过多工况分析比对明确支护设计思路。2.岩土材料参数3、各工况稳定性分析图1:回填边坡未加任何支挡时整体稳定性计算图2:上下台阶加上抗滑桩后整体稳定性计算图3:仅上台阶加上锚索后整体稳定性计算图4:上下台阶均加上锚索后整体稳定性计算4、分析结论       通过同一滑动面的整体稳定性分析可以得到:在填方后,边坡整体稳定性很差,安全系数很低;在加上抗滑桩后,提高了整体安全性,但仍处于不稳定状态;当上下台阶均施加多排锚索之后,最终计算安全系数达到设计安全系数要求。 查看全部
<p>1.项目简介</p><p>&nbsp; &nbsp; &nbsp; &nbsp;某园区东南侧为早期的开挖边坡,边坡高30m,地层以粉质黏土和黏土为主,局部区域地表为素填土。因场地功能设计要求,需在原多级开挖边坡基础上,重新回填,形成两级回填边坡。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;回填边坡采用桩板墙+锚索设计,上台阶桩长30m,设置5道锚索,锚索预应力分别为180kN、200kN、200kN、200kN、200kN;下台阶桩长30m,设置7道锚索,锚索预应力分别为300kN、400kN、400kN、450kN、450kN、500kN、500kN。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;采用GEO5土坡模块分析,可以考虑抗滑桩和锚索联合支挡的作用,通过多工况分析比对明确支护设计思路。</p><p>2.岩土材料参数</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667446042425610.png" alt="image.png"/></p><p>3、各工况稳定性分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667446075651558.png" alt="image.png" width="327" height="269" style="width: 327px; height: 269px;"/></p><p style="text-align: center;">图1:回填边坡未加任何支挡时整体稳定性计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667446130514692.png" alt="image.png" width="323" height="270" style="width: 323px; height: 270px;"/></p><p style="text-align: center;">图2:上下台阶加上抗滑桩后整体稳定性计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667446161475245.png" alt="image.png" width="348" height="259" style="width: 348px; height: 259px;"/></p><p style="text-align: center;">图3:仅上台阶加上锚索后整体稳定性计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667446201745636.png" alt="image.png" width="351" height="263" style="width: 351px; height: 263px;"/></p><p style="text-align: center;">图4:上下台阶均加上锚索后整体稳定性计算</p><p>4、分析结论</p><p>&nbsp; &nbsp; &nbsp; &nbsp;通过同一滑动面的整体稳定性分析可以得到:在填方后,边坡整体稳定性很差,安全系数很低;在加上抗滑桩后,提高了整体安全性,但仍处于不稳定状态;当上下台阶均施加多排锚索之后,最终计算安全系数达到设计安全系数要求。</p><p><br/></p>

GEO5某中学运动场边坡稳定性分析

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 1055 次浏览 • 2022-11-03 11:24 • 来自相关话题

1、项目概况       该中学拟建的运动场靠山侧为斜坡地貌,斜坡呈台阶状,地势总体上北高南低,地表为耕地及杂草。根据设计规划,拟建场地按高程742.00m,745.60m,748.75m场平后,北侧将形成台阶边坡。开挖后形成的人工边坡最高处约32m,最低处约3.5m,平均高度约16m。       场地出露地层,地表为人工填土,以耕土、碎石、建渣为主,其下为坡残积粉质黏土,主要出露于坡脚和缓坡平台。下部为基岩,呈强风化~中风化,节理裂隙较发育。       因项目涉及多级开挖边坡,既要分析天然边坡,也要分析不同开挖阶段的边坡稳定性,所以采用GEO5软件土坡模块,分工况计算各阶段的边坡稳定性。2、岩土材料参数3、各工况稳定性分析图1:天然边坡稳定性计算满足要求图2:一级台阶边坡开挖及支挡后稳定性分析图3:二级台阶边坡开挖及支挡后稳定性分析图4:三级台阶边坡开挖后稳定性分析图5:三级台阶边坡支护后稳定性分析4、分析结论       通过以上分析,可以发现该边坡在天然状况下处于稳定状态。因场地修筑,需要开挖边坡,在多级开挖过程中存在不同程度的稳定性不足的情况,通过在坡面添加锚索的方式使得边坡稳定性满足规范要求。 查看全部
<p>1、项目概况</p><p>&nbsp; &nbsp; &nbsp; &nbsp;该中学拟建的运动场靠山侧为斜坡地貌,斜坡呈台阶状,地势总体上北高南低,地表为耕地及杂草。根据设计规划,拟建场地按高程742.00m,745.60m,748.75m场平后,北侧将形成台阶边坡。开挖后形成的人工边坡最高处约32m,最低处约3.5m,平均高度约16m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;场地出露地层,地表为人工填土,以耕土、碎石、建渣为主,其下为坡残积粉质黏土,主要出露于坡脚和缓坡平台。下部为基岩,呈强风化~中风化,节理裂隙较发育。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;因项目涉及多级开挖边坡,既要分析天然边坡,也要分析不同开挖阶段的边坡稳定性,所以采用GEO5软件土坡模块,分工况计算各阶段的边坡稳定性。</p><p>2、岩土材料参数</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667445301319189.png" alt="image.png" width="483" height="322" style="width: 483px; height: 322px;"/></p><p>3、各工况稳定性分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667445326568926.png" alt="image.png" width="1" height="1" style="width: 1px; height: 1px;"/><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667445340217473.png" alt="image.png" width="357" height="327" style="width: 357px; height: 327px;"/></p><p style="text-align: center;">图1:天然边坡稳定性计算满足要求</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667445599989067.png" alt="image.png" width="329" height="305" style="width: 329px; height: 305px;"/></p><p style="text-align: center;">图2:一级台阶边坡开挖及支挡后稳定性分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667445636348445.png" alt="image.png" width="307" height="341" style="width: 307px; height: 341px;"/></p><p style="text-align: center;">图3:二级台阶边坡开挖及支挡后稳定性分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667445701580784.png" alt="image.png" width="338" height="361" style="width: 338px; height: 361px;"/></p><p style="text-align: center;">图4:三级台阶边坡开挖后稳定性分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667445736107389.png" alt="image.png" width="314" height="387" style="width: 314px; height: 387px;"/></p><p style="text-align: center;">图5:三级台阶边坡支护后稳定性分析</p><p>4、分析结论</p><p>&nbsp; &nbsp; &nbsp; &nbsp;通过以上分析,可以发现该边坡在天然状况下处于稳定状态。因场地修筑,需要开挖边坡,在多级开挖过程中存在不同程度的稳定性不足的情况,通过在坡面添加锚索的方式使得边坡稳定性满足规范要求。</p><p><br/></p>
简单、靠谱、好看、好用的岩土分析设计软件