用G2分析桥墩附近堆载对桥墩的影响

南京库仑张工 回答了问题 • 2 人关注 • 1 个回答 • 106 次浏览 • 2024-09-29 10:41 • 来自相关话题

土质边坡稳定分析时,两次自动搜索出来的最危险滑面不一致是什么原因?

南京库仑张工 回答了问题 • 2 人关注 • 1 个回答 • 453 次浏览 • 2024-08-22 15:12 • 来自相关话题

GEO5某矿渣边坡支护设计

南京库仑张工 发表了文章 • 0 个评论 • 390 次浏览 • 2024-08-22 14:18 • 来自相关话题

1 项目背景       某矿区地下水污染综合防治工程受甲方委托在矿区勘查工作和收集周边工程建设勘查资料的基础上,遵循地质灾害防治的基本原则,对矿区矿渣堆整形、矿渣堆及堆体两侧坡面护坡、拦渣坝、截排水沟、不稳定边坡支护、危岩清除等防治工程从安全有效性、技术可行性、经济合理性进行论证,提出具有针对性、系统性的最优综合防治工程方案。2 工程地质条件       针对矿区矿渣堆边坡开展调勘查,共划分8个不稳定斜坡,分别进行坡面稳定性分析评价,通过钻探取样及现场大重度试验及现场2处已经滑移边坡坡面反演综合确定不稳定斜坡物质组成成分为:       ①素填土(角砾为主):分布于矿区坡面中下部,参数取值天然状态:重度=19.0kN/m3,C=6.0kPa,φ=28.00°,饱和状态:重度=19.6kN/m3,C=0.5kPa,φ=21.00°;       ②素填土(碎石为主):分布于矿区坡面上部,参数取值天然状态:重度=19.2kN/m3,C=2.0kPa,φ=31.00°,饱和状态:重度=19.8kN/m3,C=1.2kPa,φ=27.00°;       ③强风化片岩:分布于矿渣堆下部,厚2-8m,天然单轴抗压强度14MPa,饱和单轴抗压强度10.4MPa;       ④中风化片岩:分布于强风化基岩下,分布于3-10m以下,天然单轴抗压强度32.62MPa,饱和单轴抗压强度16.54MPa;       其岩土体的渗透系数通过钻孔压水试验及现场双环实验确定①层素填土地表矿渣渗透系数值0.14~0.22cm/s,平均值K=0.18cm/s,为强透水性;①层素填土地表覆土渗透系数值2.75×10-5~4.90×10-5cm/s,平均值K=3.83×10-5m/d,为弱透水性;③-1强风化片岩渗透系数值1.29×10-3~7.02×10-3cm/s,平均值K=4.24×10-3cm/s(约72Lu),为中等透水性;③-2中风化渗透系数值2.29~9.38×10-5cm/s,平均值5.44×10-5(约4.6Lu),为弱透水性。       综合调勘查结果及周边1:5000水文地质调查成果,地下水均为大气降雨补给,主要以矿渣堆素填土及坡面表层粉质粘土的孔隙潜水存在,局部受地形切割出露为下降泉径流;下部基岩裂隙水弱含水性,径流较近,因此综合地下水污染防治效果,本次主要采取对矿渣堆整形加封闭矿渣堆减少降雨入渗为主的方法治理。3 斜坡稳定性计算及支护设计       根据不稳定斜坡变形现状,及区内水文地形等特点,分别对不稳定斜坡天然、地震和暴雨工况进行计算。1号不稳定斜坡天然工况计算1号不稳定斜坡地震工况计算1号不稳定斜坡暴雨工况计算       对所有8个不稳定斜坡均进行计算后,所有斜坡均处于基本稳定到欠稳定状态,需要进行支护设计。       本次堆积矿渣高度在5m-15m,且矿渣堆主要为强风化片岩,使用加筋土挡墙工程可以有效利用矿渣,且较为经济。加筋土挡墙可以分级台阶做坡度,在面层开展防渗措施。因此本次支护方案采用加筋土挡墙设计。       考虑到加筋土墙的土工格栅的蠕变、耐久、安装等损失,最终加筋土墙采用双向聚酯(PET)的土工格栅的材料,防腐等级在2-13,它的质控出厂抗拉强度可达400kN/m。加筋土挡墙设计加筋后整体稳定性分析4 总结       本次项目主要是基于地下水污染防治防渗目的开展的边坡整形消纳支挡工程设计,主要基于前期调查,确定污染来源主要为大气降水淋滤矿渣造成的水污染,未发现有深层基岩泉水出露的条件下,开展边坡稳定性分析,在此基础上进行加筋土挡墙设计。       GEO5边坡稳定系分析模块可以一个文件分析多种工况问题,减少重复建模操作,加筋土挡墙设计模块支持多级台阶设置,对本设计方案提供了计算支撑。 查看全部
1 项目背景       某矿区地下水污染综合防治工程受甲方委托在矿区勘查工作和收集周边工程建设勘查资料的基础上,遵循地质灾害防治的基本原则,对矿区矿渣堆整形、矿渣堆及堆体两侧坡面护坡、拦渣坝、截排水沟、不稳定边坡支护、危岩清除等防治工程从安全有效性、技术可行性、经济合理性进行论证,提出具有针对性、系统性的最优综合防治工程方案。2 工程地质条件       针对矿区矿渣堆边坡开展调勘查,共划分8个不稳定斜坡,分别进行坡面稳定性分析评价,通过钻探取样及现场大重度试验及现场2处已经滑移边坡坡面反演综合确定不稳定斜坡物质组成成分为:       ①素填土(角砾为主):分布于矿区坡面中下部,参数取值天然状态:重度=19.0kN/m3,C=6.0kPa,φ=28.00°,饱和状态:重度=19.6kN/m3,C=0.5kPa,φ=21.00°;       ②素填土(碎石为主):分布于矿区坡面上部,参数取值天然状态:重度=19.2kN/m3,C=2.0kPa,φ=31.00°,饱和状态:重度=19.8kN/m3,C=1.2kPa,φ=27.00°;       ③强风化片岩:分布于矿渣堆下部,厚2-8m,天然单轴抗压强度14MPa,饱和单轴抗压强度10.4MPa;       ④中风化片岩:分布于强风化基岩下,分布于3-10m以下,天然单轴抗压强度32.62MPa,饱和单轴抗压强度16.54MPa;       其岩土体的渗透系数通过钻孔压水试验及现场双环实验确定①层素填土地表矿渣渗透系数值0.14~0.22cm/s,平均值K=0.18cm/s,为强透水性;①层素填土地表覆土渗透系数值2.75×10-5~4.90×10-5cm/s,平均值K=3.83×10-5m/d,为弱透水性;③-1强风化片岩渗透系数值1.29×10-3~7.02×10-3cm/s,平均值K=4.24×10-3cm/s(约72Lu),为中等透水性;③-2中风化渗透系数值2.29~9.38×10-5cm/s,平均值5.44×10-5(约4.6Lu),为弱透水性。       综合调勘查结果及周边1:5000水文地质调查成果,地下水均为大气降雨补给,主要以矿渣堆素填土及坡面表层粉质粘土的孔隙潜水存在,局部受地形切割出露为下降泉径流;下部基岩裂隙水弱含水性,径流较近,因此综合地下水污染防治效果,本次主要采取对矿渣堆整形加封闭矿渣堆减少降雨入渗为主的方法治理。3 斜坡稳定性计算及支护设计       根据不稳定斜坡变形现状,及区内水文地形等特点,分别对不稳定斜坡天然、地震和暴雨工况进行计算。1号不稳定斜坡天然工况计算1号不稳定斜坡地震工况计算1号不稳定斜坡暴雨工况计算       对所有8个不稳定斜坡均进行计算后,所有斜坡均处于基本稳定到欠稳定状态,需要进行支护设计。       本次堆积矿渣高度在5m-15m,且矿渣堆主要为强风化片岩,使用加筋土挡墙工程可以有效利用矿渣,且较为经济。加筋土挡墙可以分级台阶做坡度,在面层开展防渗措施。因此本次支护方案采用加筋土挡墙设计。       考虑到加筋土墙的土工格栅的蠕变、耐久、安装等损失,最终加筋土墙采用双向聚酯(PET)的土工格栅的材料,防腐等级在2-13,它的质控出厂抗拉强度可达400kN/m。加筋土挡墙设计加筋后整体稳定性分析4 总结       本次项目主要是基于地下水污染防治防渗目的开展的边坡整形消纳支挡工程设计,主要基于前期调查,确定污染来源主要为大气降水淋滤矿渣造成的水污染,未发现有深层基岩泉水出露的条件下,开展边坡稳定性分析,在此基础上进行加筋土挡墙设计。       GEO5边坡稳定系分析模块可以一个文件分析多种工况问题,减少重复建模操作,加筋土挡墙设计模块支持多级台阶设置,对本设计方案提供了计算支撑。

GEO5某滑雪小镇高陡填土边坡及抗滑桩工程设计

南京库仑张工 发表了文章 • 0 个评论 • 385 次浏览 • 2024-08-22 10:41 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、抗滑桩设计1 项目背景       某滑雪场坐落于“中国滑雪之乡”吉林省通化市,海拔约980米,依山傍水而建的16公里登山步道连接某国家森林公园景区,山体落差约568米。区域年冰雪期逾150天,平均积雪厚度可达一米左右,雪质优良,可同时容纳1000人滑雪。       本次新建滑雪场度假区滑雪小镇位于滑雪场东侧临近的山坡地段,项目整体包括7栋公寓、别墅区、造雪机房和车库等。其中C4座位于项目东南侧山坡,按项目规划,在紧邻C4座东侧需要大量填土,预计新填土及原地表填土合计高度超过15米,而边坡东侧下部临近河道边坡,填土后整体形成了一个大型的高陡边坡,是该项目边坡工程中最危险的部分。项目整体及C4座周边填土边坡情况如下图所示。项目场地周边效果图2 工程地质条件       拟建场区地貌单元为坡积地貌,地势变化较大。孔口高程最大值为454.90m,最小值为416.09m,最大高差38.81m。       勘察深度内,场区地下水属第四系潜水,初见水位埋深自然地面以下1.70~4.40m,稳定水位埋深自然地面以下1.50~4.20m,稳定水位标高为411.89~449.22m,勘察区内地形为山坡,地表水不发育,地下水补给来源主要为大气降雨和雪水融化,降水量比较充沛。山区覆盖层比较薄,有利于降水渗入补给。       由于地势较高,汇水面积小,地形坡度较大,覆盖层不厚,因此地表水径流条件良好,并在短时间内,由沟谷泄走。        地层岩性由上至下分10层,表层土为第四系素填土、粉质粘土含角砾、粗砂、圆砾、卵石,下伏基岩为:老岭群珍珠门组大理岩,根据勘察区岩体露头产状,倾向135°,倾角63°。现分层描述如下:       第①层 素填土:暗黄色、黑色,湿,松散,主要由碎石、粘性土等回填,该层在场区内分布不连续,层厚0.40~3.00m。       第②层 腐殖土:黑色,湿,松散,该层在场区部分地段见到,层厚0.30~1.90m。       第③层 粉质粘土含角砾:暗黄色,湿~饱和,可塑,角砾含量20%左右,该层在场区内部分地段缺失,层厚0.40~3.40m。       第④层 粗砂:暗黄色,湿,稍密,粒径大于0.5mm的颗粒质量超过总质量的50%以上,颗分级配好,分选性差,该层在场区内部分地段见到,层厚0.80~2.10m。       第⑤层 角砾:暗黄色,湿~饱和,稍密,粒径大于2mm的颗粒质量占总质量的50%以上,呈棱角状,一般粒径2~5mm,最大粒径10mm,由粘性土充填,该层在场区内分布不连续,层厚1.60~2.70m。       第⑥层 碎石:暗黄色,湿,稍密,粒径大于20mm的颗粒质量占总质量的50%以上,呈棱角状,一般粒径20~50mm,最大粒径70mm,由粘性土充填,该层在场区内部分地段见到,层厚0.50~3.10m。       第⑦层 卵石:暗黄色,湿~饱和,稍密,粒径大于20mm的颗粒占总质量的50%以上,呈亚圆状,一般粒径20~60mm,最大粒径120mm,由砂类土充填,该层在场区内分布不连续,层厚0.30~4.60m。       第⑧层 大理岩:全风化,灰白色,经风化作用,结构被破坏,见原岩成份,该层在场区内分布不连续,层厚0.40~0.90m。       第⑨层 大理岩:强风化,灰白色,隐晶质变晶结构,块状构造,为较软岩,较破碎,岩芯呈碎块状,岩体基本质量等级为Ⅳ级,层厚0.20~2.10m。       第⑩层 大理岩:中风化,灰白色,隐晶质变晶结构,块状构造,为较软岩,较完整,岩芯呈短柱状及块状,岩体基本质量等级为Ⅳ级,层厚5.00~20.40m。场地7-7工程地质剖面图3 支挡结构设计3.1设计参数       (1)X1-X2-X3-X4剖面:采用直径1200mm抗滑桩,间距2.4m,桩长18m, 桩端进入中风化大理岩不小于4m,兼做上部悬臂式挡土墙的桩基础,悬臂式挡土墙高3m;       (2)Y1-Y2-Y3-Y4-Y5剖面:采用直径1400mm抗滑桩,间距2.4m,桩长11m, 桩端进入中风化大理岩不小于4m,兼做上部扶壁式挡土墙的桩基础,扶壁式挡土墙高5m;       (3)支护桩及悬臂式、扶壁式挡土墙采用C30混凝土,主筋采用HRB400级钢筋,箍筋可采用HPB335级钢筋;主筋外侧混凝土保护层厚度50mm;       (4)锚索采用3-7∅5(∅=15.2)钢绞线为筋体,成孔直径不小于150mm,注浆材料为素水泥浆,水灰比0.8:1,水泥采用42.5级普通硅酸盐水泥,应按规范要求保证锚索施工质量;       (5)锚索承载力标准值Nk=150kPa,预拉力为Nk的140%,持荷5分钟后锁定,锁定力为Nk的85%;       (6)填土要求:上部填土必须分层夯实,分层厚度不大于400mm,压实系数不小于0.95,并严格按照图中尺寸进行填筑,严禁超挖超填;回填材料为砂类土或黏土混以碎石,严禁使用软黏土、膨胀性土、淤泥质土、耕植土或冻土作为回填土;       (7)上部挡墙后地面横坡坡度大于1:6时,应在进行地面粗糙后再填土;       (8)锚索及锚头的防腐处应符合《建筑边坡工程技术规范》GB50330-2013永久性锚杆的防腐蚀处理的规定。典型设计剖面3.2计算分析成果(1)天然工况计算(2)地震工况计算4 总结       本项目整体建于山体边坡上,涉及各种边坡形式较多,也采取了不同的支护手段,采用库仑GEO5岩土分析软件,可以实现多工况在一个文件当中进行计算,方便快捷,计算成果为设计提供了支撑。       项目于2021年初进行设计,并陆续施工,至2022年完工,当时正处于新冠疫情期间,未能采集到施工过程的影像,后期据业主反映建成后效果很好,且与度假区整体的景观规划较协调。 查看全部
使用模块:GEO5土质边坡稳定性分析、抗滑桩设计1 项目背景       某滑雪场坐落于“中国滑雪之乡”吉林省通化市,海拔约980米,依山傍水而建的16公里登山步道连接某国家森林公园景区,山体落差约568米。区域年冰雪期逾150天,平均积雪厚度可达一米左右,雪质优良,可同时容纳1000人滑雪。       本次新建滑雪场度假区滑雪小镇位于滑雪场东侧临近的山坡地段,项目整体包括7栋公寓、别墅区、造雪机房和车库等。其中C4座位于项目东南侧山坡,按项目规划,在紧邻C4座东侧需要大量填土,预计新填土及原地表填土合计高度超过15米,而边坡东侧下部临近河道边坡,填土后整体形成了一个大型的高陡边坡,是该项目边坡工程中最危险的部分。项目整体及C4座周边填土边坡情况如下图所示。项目场地周边效果图2 工程地质条件       拟建场区地貌单元为坡积地貌,地势变化较大。孔口高程最大值为454.90m,最小值为416.09m,最大高差38.81m。       勘察深度内,场区地下水属第四系潜水,初见水位埋深自然地面以下1.70~4.40m,稳定水位埋深自然地面以下1.50~4.20m,稳定水位标高为411.89~449.22m,勘察区内地形为山坡,地表水不发育,地下水补给来源主要为大气降雨和雪水融化,降水量比较充沛。山区覆盖层比较薄,有利于降水渗入补给。       由于地势较高,汇水面积小,地形坡度较大,覆盖层不厚,因此地表水径流条件良好,并在短时间内,由沟谷泄走。        地层岩性由上至下分10层,表层土为第四系素填土、粉质粘土含角砾、粗砂、圆砾、卵石,下伏基岩为:老岭群珍珠门组大理岩,根据勘察区岩体露头产状,倾向135°,倾角63°。现分层描述如下:       第①层 素填土:暗黄色、黑色,湿,松散,主要由碎石、粘性土等回填,该层在场区内分布不连续,层厚0.40~3.00m。       第②层 腐殖土:黑色,湿,松散,该层在场区部分地段见到,层厚0.30~1.90m。       第③层 粉质粘土含角砾:暗黄色,湿~饱和,可塑,角砾含量20%左右,该层在场区内部分地段缺失,层厚0.40~3.40m。       第④层 粗砂:暗黄色,湿,稍密,粒径大于0.5mm的颗粒质量超过总质量的50%以上,颗分级配好,分选性差,该层在场区内部分地段见到,层厚0.80~2.10m。       第⑤层 角砾:暗黄色,湿~饱和,稍密,粒径大于2mm的颗粒质量占总质量的50%以上,呈棱角状,一般粒径2~5mm,最大粒径10mm,由粘性土充填,该层在场区内分布不连续,层厚1.60~2.70m。       第⑥层 碎石:暗黄色,湿,稍密,粒径大于20mm的颗粒质量占总质量的50%以上,呈棱角状,一般粒径20~50mm,最大粒径70mm,由粘性土充填,该层在场区内部分地段见到,层厚0.50~3.10m。       第⑦层 卵石:暗黄色,湿~饱和,稍密,粒径大于20mm的颗粒占总质量的50%以上,呈亚圆状,一般粒径20~60mm,最大粒径120mm,由砂类土充填,该层在场区内分布不连续,层厚0.30~4.60m。       第⑧层 大理岩:全风化,灰白色,经风化作用,结构被破坏,见原岩成份,该层在场区内分布不连续,层厚0.40~0.90m。       第⑨层 大理岩:强风化,灰白色,隐晶质变晶结构,块状构造,为较软岩,较破碎,岩芯呈碎块状,岩体基本质量等级为Ⅳ级,层厚0.20~2.10m。       第⑩层 大理岩:中风化,灰白色,隐晶质变晶结构,块状构造,为较软岩,较完整,岩芯呈短柱状及块状,岩体基本质量等级为Ⅳ级,层厚5.00~20.40m。场地7-7工程地质剖面图3 支挡结构设计3.1设计参数       (1)X1-X2-X3-X4剖面:采用直径1200mm抗滑桩,间距2.4m,桩长18m, 桩端进入中风化大理岩不小于4m,兼做上部悬臂式挡土墙的桩基础,悬臂式挡土墙高3m;       (2)Y1-Y2-Y3-Y4-Y5剖面:采用直径1400mm抗滑桩,间距2.4m,桩长11m, 桩端进入中风化大理岩不小于4m,兼做上部扶壁式挡土墙的桩基础,扶壁式挡土墙高5m;       (3)支护桩及悬臂式、扶壁式挡土墙采用C30混凝土,主筋采用HRB400级钢筋,箍筋可采用HPB335级钢筋;主筋外侧混凝土保护层厚度50mm;       (4)锚索采用3-7∅5(∅=15.2)钢绞线为筋体,成孔直径不小于150mm,注浆材料为素水泥浆,水灰比0.8:1,水泥采用42.5级普通硅酸盐水泥,应按规范要求保证锚索施工质量;       (5)锚索承载力标准值Nk=150kPa,预拉力为Nk的140%,持荷5分钟后锁定,锁定力为Nk的85%;       (6)填土要求:上部填土必须分层夯实,分层厚度不大于400mm,压实系数不小于0.95,并严格按照图中尺寸进行填筑,严禁超挖超填;回填材料为砂类土或黏土混以碎石,严禁使用软黏土、膨胀性土、淤泥质土、耕植土或冻土作为回填土;       (7)上部挡墙后地面横坡坡度大于1:6时,应在进行地面粗糙后再填土;       (8)锚索及锚头的防腐处应符合《建筑边坡工程技术规范》GB50330-2013永久性锚杆的防腐蚀处理的规定。典型设计剖面3.2计算分析成果(1)天然工况计算(2)地震工况计算4 总结       本项目整体建于山体边坡上,涉及各种边坡形式较多,也采取了不同的支护手段,采用库仑GEO5岩土分析软件,可以实现多工况在一个文件当中进行计算,方便快捷,计算成果为设计提供了支撑。       项目于2021年初进行设计,并陆续施工,至2022年完工,当时正处于新冠疫情期间,未能采集到施工过程的影像,后期据业主反映建成后效果很好,且与度假区整体的景观规划较协调。

GEO5某水库管理营地边坡支护结构设计

南京库仑张工 发表了文章 • 0 个评论 • 357 次浏览 • 2024-08-22 10:34 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、抗滑桩设计、扶壁式挡土墙设计、重力式挡土墙设计1 项目背景       某水库位于金沙江左岸某二级支流中上游。水库为III等中型工程,工程任务为农业灌溉,城乡供水等综合利用。水库正常蓄水位1971.0m,设计洪水位1971.02m,校核洪水位1971.48m。水库总库容5113万m3,兴利库容4446万m3。工程由水库枢纽和灌区工程两部分组成,其中:水库枢纽包括大坝(粘土心墙石渣坝)、溢洪道、放空(导流)隧洞、取水隧洞等;灌区工程包括1条干渠和4条支渠。       工程场地库坝区未来50年超越概率10%的基岩水平峰值加速度为0.121g,相应地震烈度为Ⅶ度。       根据《水利水电工程合理使用年限及耐久性设计规范》(SL654-2014)表 3.0.2确定,对综合利用的水利水电工程,工程合理使用年限应按其中最高年限确定。该水库工程等别为Ⅲ等,工程规模为中型,确定工程合理使用年限为50年。       水库配套管理营地工程区位于右岸,场地现状为斜坡地段。场地地面高程为 1993m~2017m,最大高程为 22m,自然边坡坡度为 15°~20°,局部较陡, 最大约 30°。因处于斜坡地带,需对营地周边边坡进行支护结构设计。管理营地区域位置2 工程地质条件       根据工程地质测绘及勘探揭示,场地覆盖层主要为第四系残坡积形成的(Q4el+dl) 含孤块碎石土、含碎砾石粉质黏土,下伏基岩为白垩系下统粉砂质泥岩,各岩土层地质特征自上而下描述如下:(1)第四系残坡积层(Q4el+dl)       ①1 含孤块碎石土:紫红色,主要为孤块石, 原岩为粉砂质泥岩,呈碎块-柱状,碎块大小 2-6cm,柱长 5cm-25cm,含量 60%-70%,中间夹少量粉质黏土。厚度 4.6m~6.5m。       ①2 含碎砾石粉质黏土: 褐色,稍湿~干燥,松散~稍密,可塑状,碎石呈棱角-次棱角状,大小1-5cm,含量约 20%~30%,原岩为粉砂质泥岩。厚度 1.5m~7m。(2) 白垩系下统基岩       ②粉砂质泥岩:紫红色、青灰色,湿,成分以粘土矿物为主,泥质结构,薄层~中厚层状构造。       按其风化程度的不同,粉砂质泥岩可分为以下三个亚层:       ②1 强风化粉砂质泥岩: 强卸荷,岩体强烈卸荷松弛,普遍夹泥, 裂隙发育,遇水易崩解,性软,岩芯呈散体状结构,碎块大小 3cm~30cm。 厚度 1.5m~12m。       ②2 中风化粉砂质泥岩:岩体结构部分破坏,层理较为清晰,性脆,断口不平整,岩芯呈短柱状及柱状,较完整。 厚度 3.2m ~12m。       ②3 微新风化粉砂质泥岩:岩体结构基本未变,仅节理面有少量锈染,有少量风化裂隙,岩芯呈柱状及长柱状,较完整,本次未揭穿。场地岩土体物理力学参数建议值3 边坡支挡结构设计       营地后边坡采用抗滑桩结合逆作法锚拉式重力挡墙工艺,营地前缘边坡采用扶壁式挡墙填方施工,边坡开挖施工应严格按照从上至下刷坡,严禁未刷坡擅自开挖坡脚,采用动态信息化施工方法,做好施工期监测保证施工期安全。3.1边坡安全等级       边坡、挡土墙结构设计工作年限为50年;1#抗滑桩结合挡墙支护的边坡安全等级为以及一级,结构重要性系数为1.1,2#挡墙边坡安全等级为二级,结构重要性系数为1.0,3#挡墙边坡安全等级为一级,结构重要性系数为1.1。       持久工况挡墙抗滑移稳定系数为1.3,抗倾覆稳定系数为1.6;地震工况挡墙抗滑移稳定系数为1.1,抗倾覆稳定系数为1.3。       根据《建筑边坡工程技术规范》(GB50330~2013)要求,营地后边坡安全等级取一级,一般工况边坡稳定安全系数取1.35,地震工况取1.15。营地前缘填方边坡安全等级取二级,一般工况边坡稳定安全系数取1.30,地震工况取1.10。3.2典型断面设计3.3计算分析成果(1)抗滑桩支挡边坡设计(2)重力式挡墙支护设计(3)扶壁式挡墙支挡结构设计4 总结       本项目属于斜坡场地周边边坡支护设计,根据不同位置地质条件及斜坡高度,采取了不同的支护措施。       利用南京库仑GEO5岩土分析软件,可以快速建立多种挡墙类型及抗滑桩支挡结构,便于方案对比分析,多模块可以联合使用,省去重复建模时间,提高了项目设计效率。 查看全部
使用模块:GEO5土质边坡稳定性分析、抗滑桩设计、扶壁式挡土墙设计、重力式挡土墙设计1 项目背景       某水库位于金沙江左岸某二级支流中上游。水库为III等中型工程,工程任务为农业灌溉,城乡供水等综合利用。水库正常蓄水位1971.0m,设计洪水位1971.02m,校核洪水位1971.48m。水库总库容5113万m3,兴利库容4446万m3。工程由水库枢纽和灌区工程两部分组成,其中:水库枢纽包括大坝(粘土心墙石渣坝)、溢洪道、放空(导流)隧洞、取水隧洞等;灌区工程包括1条干渠和4条支渠。       工程场地库坝区未来50年超越概率10%的基岩水平峰值加速度为0.121g,相应地震烈度为Ⅶ度。       根据《水利水电工程合理使用年限及耐久性设计规范》(SL654-2014)表 3.0.2确定,对综合利用的水利水电工程,工程合理使用年限应按其中最高年限确定。该水库工程等别为Ⅲ等,工程规模为中型,确定工程合理使用年限为50年。       水库配套管理营地工程区位于右岸,场地现状为斜坡地段。场地地面高程为 1993m~2017m,最大高程为 22m,自然边坡坡度为 15°~20°,局部较陡, 最大约 30°。因处于斜坡地带,需对营地周边边坡进行支护结构设计。管理营地区域位置2 工程地质条件       根据工程地质测绘及勘探揭示,场地覆盖层主要为第四系残坡积形成的(Q4el+dl) 含孤块碎石土、含碎砾石粉质黏土,下伏基岩为白垩系下统粉砂质泥岩,各岩土层地质特征自上而下描述如下:(1)第四系残坡积层(Q4el+dl)       ①1 含孤块碎石土:紫红色,主要为孤块石, 原岩为粉砂质泥岩,呈碎块-柱状,碎块大小 2-6cm,柱长 5cm-25cm,含量 60%-70%,中间夹少量粉质黏土。厚度 4.6m~6.5m。       ①2 含碎砾石粉质黏土: 褐色,稍湿~干燥,松散~稍密,可塑状,碎石呈棱角-次棱角状,大小1-5cm,含量约 20%~30%,原岩为粉砂质泥岩。厚度 1.5m~7m。(2) 白垩系下统基岩       ②粉砂质泥岩:紫红色、青灰色,湿,成分以粘土矿物为主,泥质结构,薄层~中厚层状构造。       按其风化程度的不同,粉砂质泥岩可分为以下三个亚层:       ②1 强风化粉砂质泥岩: 强卸荷,岩体强烈卸荷松弛,普遍夹泥, 裂隙发育,遇水易崩解,性软,岩芯呈散体状结构,碎块大小 3cm~30cm。 厚度 1.5m~12m。       ②2 中风化粉砂质泥岩:岩体结构部分破坏,层理较为清晰,性脆,断口不平整,岩芯呈短柱状及柱状,较完整。 厚度 3.2m ~12m。       ②3 微新风化粉砂质泥岩:岩体结构基本未变,仅节理面有少量锈染,有少量风化裂隙,岩芯呈柱状及长柱状,较完整,本次未揭穿。场地岩土体物理力学参数建议值3 边坡支挡结构设计       营地后边坡采用抗滑桩结合逆作法锚拉式重力挡墙工艺,营地前缘边坡采用扶壁式挡墙填方施工,边坡开挖施工应严格按照从上至下刷坡,严禁未刷坡擅自开挖坡脚,采用动态信息化施工方法,做好施工期监测保证施工期安全。3.1边坡安全等级       边坡、挡土墙结构设计工作年限为50年;1#抗滑桩结合挡墙支护的边坡安全等级为以及一级,结构重要性系数为1.1,2#挡墙边坡安全等级为二级,结构重要性系数为1.0,3#挡墙边坡安全等级为一级,结构重要性系数为1.1。       持久工况挡墙抗滑移稳定系数为1.3,抗倾覆稳定系数为1.6;地震工况挡墙抗滑移稳定系数为1.1,抗倾覆稳定系数为1.3。       根据《建筑边坡工程技术规范》(GB50330~2013)要求,营地后边坡安全等级取一级,一般工况边坡稳定安全系数取1.35,地震工况取1.15。营地前缘填方边坡安全等级取二级,一般工况边坡稳定安全系数取1.30,地震工况取1.10。3.2典型断面设计3.3计算分析成果(1)抗滑桩支挡边坡设计(2)重力式挡墙支护设计(3)扶壁式挡墙支挡结构设计4 总结       本项目属于斜坡场地周边边坡支护设计,根据不同位置地质条件及斜坡高度,采取了不同的支护措施。       利用南京库仑GEO5岩土分析软件,可以快速建立多种挡墙类型及抗滑桩支挡结构,便于方案对比分析,多模块可以联合使用,省去重复建模时间,提高了项目设计效率。

GEO5某省道应急抢险修复工程设计

南京库仑张工 发表了文章 • 0 个评论 • 453 次浏览 • 2024-08-22 10:13 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、微型桩设计一、项目背景       某省道K160+800~K160+845段为直线填方路基段,外侧路肩墙高3.0~4.0m高,路面标高660.58~662.84m左右,纵面较平缓,道路外侧坡体为自然状态的单斜坡地形,横坡总体较缓。       今年5月中旬因遭受连续强降雨,地表水陡增,雨水渗入填土与原生黏性土面(粉质黏土属相对隔水层),导致上部填土层含水量增大,逐渐饱水软化,抗剪强度减小,容重增加等综合作用下产生路基沉降约20cm、路面开裂形成纵向裂缝,裂缝宽约5~10cm,路肩墙向外推移变形,严重影响交通。安全隐患影响较大。该道路为境内主干道,涉及数万人员出行及各种物资运输,影响重大,综合以上因素,该段路基水毁急需抢险治理。道路现场照片二、滑坡体特征       根据本次工程地质测绘、钻探揭露及收集的已有资料,滑坡滑体物质主要由粉质粘土夹块碎石、素填土组成,厚度2.0~6.0m,黄褐色、棕褐色,块石含量不均,一般10~30%,粒径一般 0.10~0.50m,粘土呈软塑~可塑状,透水性较差。       滑带土位于土层内部,埋深3.1m;滑带土主要为粘土,黄褐色,软塑状,含约10%的角砾、碎石,角砾粒径一般5~20mm,角砾呈次棱角状,无定向排列,滑带土受挤压、搓揉明显。       滑床物质为坡洪积(Q4dl+pl)黄褐色粉质粘土,粉质粘土呈可塑~硬塑状,滑床形态纵向上呈折线型,与地表形态相近。       滑体中地下水主要为松散岩类孔隙水,其地下水主要为大气降雨补给,具就地补给就近排泄,径流距离较短的特点。因滑坡体位于斜坡地段,地下水赋存条件差,排泄条件好,勘察期间对施工钻孔进行的水文地质观测及抽水试验成果,滑坡路段地下水较贫乏。滑带土取芯照片       该段上部为原道路修建时堆积填土,厚度约1~5.5m,下部为可塑~硬塑状粉质黏土,黄褐色,含少量碎石角砾,厚度约2.0~30.0m,下伏基岩为二叠系中统龙潭、大隆并组的页岩、灰岩,岩体较破碎,附近较远处基岩测得实际产状,倾向为328°,倾角12°;斜坡主要为填土、粉质黏土,以荒地、林地相间,局部旱地。植被总体较发育。近10年岸坡总体较稳定,未有大范围岸坡滑移现象,以局部下沉变形迹象为主。三、滑坡稳定性分析(1)定性分析       滑坡的形成,是由其地形地貌、地层岩性、水及人类工程活动的共同作用的结果:厚度较大的第四系坡洪积土的存在,为滑坡的形成提供了物质基础。据已有钻探资料揭示,在滑坡区域内,坡洪积土厚一般4.0~30.0m,为滑坡层产生不同程度的变形;水的作用,是滑坡形成的激发因素,区域内降雨量大并集中,多为大、暴雨,雨水的下渗,不但降低土体的抗剪强度,还提高滑体重量,产生动水压力等,为滑坡产生变形提了有利条件。       滑坡所的形成提供丰富的物质来源;软弱结构面的存在为滑坡的形成提供了良好的地质环境,便于形成滑动面,由于土体本身强度的降低,形成软弱结构面,这样接触面倾角适宜的条件下,使土体产生足够的下滑分力;滑坡体位处斜坡地段,地面坡角与滑面坡度基本一致,坡度角一般为10~22°,地形坡度条件为滑坡形成与位移提供了临空面,大气降水对滑体进行冲刷、侵蚀、饱和软化,使滑坡堆积处位置地形坡角较大,滑坡临空条件较好,为滑坡的形成及发生创造了有利的工程地质条件。汛期雨水较多,滑坡持续受大雨、暴雨影响,造成滑体物质力学性质降低,导致坡体中前部局部出现滑移、外挤迹象。若遇暴雨或持续降雨影响,该滑坡有可能在坡体中部、后部出现滑移破坏,并且有可能进一步加剧变形,发展为滑体发生整体下滑。目前该滑坡处于欠稳定状态。(2)滑动面参数确定       滑坡滑面参数的综合确定:综合考虑滑坡体性质(成分及覆盖层厚度)、滑面的工程物理特性、同类工程经验类比、反演分析成果及相关规范,确定本滑坡滑动面的抗剪设计参数为:C=14.2kPa(12.5 kPa),Φ=9.0°(8.5°)。滑坡设计计算参数见下表:(3)定量计算       本次稳定性计算采用GEO5软件。工况分为工况一、自重(天然状态),工况二、自重+暴雨(饱和状态)。安全系数根据《公路路基设计规范》(JGT D30-2015)第7.2.2条第1款有关规定,计算时安全系数分别为:       工况一、自重(天然状态)下,安全系数取1.25;       工况二、自重+暴雨(饱和状态)下,安全系数取1.15。       稳定性计算考虑2种工况:一、自重+天然状态;二、自重+饱水状态;对现有滑坡稳定性进行计算,计算方法采用折线法(不平衡推力法隐式),结算结果汇总如下:四、滑坡治理设计       在本设计中,首先对治理方案的技术合理性、施工的可行性和经济三个方面综合考虑。同时,着重考虑施工安全、工期的因素,从而选择最快捷的治理方案。结合本道路的特殊性及实际情况,对该滑坡进行综合治理。尽早完成道路施工为基本,其次为持久型治理设计,其目的在于确保以后该道路在长期运行的安全,同时消除滑坡对道路的安全隐患。两部分相辅相成,共同作用达到缩短工期、节约成本的目的。       综合考虑现场地形、地质及环境条件,其设计治理方案为:对既有滑坡体采用道路中线附近钢管桩注浆加固+外侧钢管桩地梁+挡墙恢复路基+道路中线内侧钻孔注浆加固+仰斜式排水孔+综合截排水措施,其它为路面恢复、综合交安。       本次设计方案验算是基于勘察成果所提供的岩土参数进行支挡后的稳定性计算,计算考虑2种工况:一、支挡+自重+天然状态;二、支挡+自重+饱水状态,计算方法采用折线法(不平衡推力法隐式),结算结果汇总如下:五、总结       本项目属于道路应急抢险修复工程。现场发现异常情况后,通过勘察了解场地地质构造及滑带土性质,从定性和定量角度分析了道路边坡的稳定性,从应急抢险角度出发,制定了钢管桩加挡墙的联合支挡形式。       本项目利用GEO5软件进行分析和验算,在场地评价和支护结构设计方面都起到了技术支撑作用,为设计方案提供了依据,最终方案已指导现场顺利施工。现场施工照片 查看全部
使用模块:GEO5土质边坡稳定性分析、微型桩设计一、项目背景       某省道K160+800~K160+845段为直线填方路基段,外侧路肩墙高3.0~4.0m高,路面标高660.58~662.84m左右,纵面较平缓,道路外侧坡体为自然状态的单斜坡地形,横坡总体较缓。       今年5月中旬因遭受连续强降雨,地表水陡增,雨水渗入填土与原生黏性土面(粉质黏土属相对隔水层),导致上部填土层含水量增大,逐渐饱水软化,抗剪强度减小,容重增加等综合作用下产生路基沉降约20cm、路面开裂形成纵向裂缝,裂缝宽约5~10cm,路肩墙向外推移变形,严重影响交通。安全隐患影响较大。该道路为境内主干道,涉及数万人员出行及各种物资运输,影响重大,综合以上因素,该段路基水毁急需抢险治理。道路现场照片二、滑坡体特征       根据本次工程地质测绘、钻探揭露及收集的已有资料,滑坡滑体物质主要由粉质粘土夹块碎石、素填土组成,厚度2.0~6.0m,黄褐色、棕褐色,块石含量不均,一般10~30%,粒径一般 0.10~0.50m,粘土呈软塑~可塑状,透水性较差。       滑带土位于土层内部,埋深3.1m;滑带土主要为粘土,黄褐色,软塑状,含约10%的角砾、碎石,角砾粒径一般5~20mm,角砾呈次棱角状,无定向排列,滑带土受挤压、搓揉明显。       滑床物质为坡洪积(Q4dl+pl)黄褐色粉质粘土,粉质粘土呈可塑~硬塑状,滑床形态纵向上呈折线型,与地表形态相近。       滑体中地下水主要为松散岩类孔隙水,其地下水主要为大气降雨补给,具就地补给就近排泄,径流距离较短的特点。因滑坡体位于斜坡地段,地下水赋存条件差,排泄条件好,勘察期间对施工钻孔进行的水文地质观测及抽水试验成果,滑坡路段地下水较贫乏。滑带土取芯照片       该段上部为原道路修建时堆积填土,厚度约1~5.5m,下部为可塑~硬塑状粉质黏土,黄褐色,含少量碎石角砾,厚度约2.0~30.0m,下伏基岩为二叠系中统龙潭、大隆并组的页岩、灰岩,岩体较破碎,附近较远处基岩测得实际产状,倾向为328°,倾角12°;斜坡主要为填土、粉质黏土,以荒地、林地相间,局部旱地。植被总体较发育。近10年岸坡总体较稳定,未有大范围岸坡滑移现象,以局部下沉变形迹象为主。三、滑坡稳定性分析(1)定性分析       滑坡的形成,是由其地形地貌、地层岩性、水及人类工程活动的共同作用的结果:厚度较大的第四系坡洪积土的存在,为滑坡的形成提供了物质基础。据已有钻探资料揭示,在滑坡区域内,坡洪积土厚一般4.0~30.0m,为滑坡层产生不同程度的变形;水的作用,是滑坡形成的激发因素,区域内降雨量大并集中,多为大、暴雨,雨水的下渗,不但降低土体的抗剪强度,还提高滑体重量,产生动水压力等,为滑坡产生变形提了有利条件。       滑坡所的形成提供丰富的物质来源;软弱结构面的存在为滑坡的形成提供了良好的地质环境,便于形成滑动面,由于土体本身强度的降低,形成软弱结构面,这样接触面倾角适宜的条件下,使土体产生足够的下滑分力;滑坡体位处斜坡地段,地面坡角与滑面坡度基本一致,坡度角一般为10~22°,地形坡度条件为滑坡形成与位移提供了临空面,大气降水对滑体进行冲刷、侵蚀、饱和软化,使滑坡堆积处位置地形坡角较大,滑坡临空条件较好,为滑坡的形成及发生创造了有利的工程地质条件。汛期雨水较多,滑坡持续受大雨、暴雨影响,造成滑体物质力学性质降低,导致坡体中前部局部出现滑移、外挤迹象。若遇暴雨或持续降雨影响,该滑坡有可能在坡体中部、后部出现滑移破坏,并且有可能进一步加剧变形,发展为滑体发生整体下滑。目前该滑坡处于欠稳定状态。(2)滑动面参数确定       滑坡滑面参数的综合确定:综合考虑滑坡体性质(成分及覆盖层厚度)、滑面的工程物理特性、同类工程经验类比、反演分析成果及相关规范,确定本滑坡滑动面的抗剪设计参数为:C=14.2kPa(12.5 kPa),Φ=9.0°(8.5°)。滑坡设计计算参数见下表:(3)定量计算       本次稳定性计算采用GEO5软件。工况分为工况一、自重(天然状态),工况二、自重+暴雨(饱和状态)。安全系数根据《公路路基设计规范》(JGT D30-2015)第7.2.2条第1款有关规定,计算时安全系数分别为:       工况一、自重(天然状态)下,安全系数取1.25;       工况二、自重+暴雨(饱和状态)下,安全系数取1.15。       稳定性计算考虑2种工况:一、自重+天然状态;二、自重+饱水状态;对现有滑坡稳定性进行计算,计算方法采用折线法(不平衡推力法隐式),结算结果汇总如下:四、滑坡治理设计       在本设计中,首先对治理方案的技术合理性、施工的可行性和经济三个方面综合考虑。同时,着重考虑施工安全、工期的因素,从而选择最快捷的治理方案。结合本道路的特殊性及实际情况,对该滑坡进行综合治理。尽早完成道路施工为基本,其次为持久型治理设计,其目的在于确保以后该道路在长期运行的安全,同时消除滑坡对道路的安全隐患。两部分相辅相成,共同作用达到缩短工期、节约成本的目的。       综合考虑现场地形、地质及环境条件,其设计治理方案为:对既有滑坡体采用道路中线附近钢管桩注浆加固+外侧钢管桩地梁+挡墙恢复路基+道路中线内侧钻孔注浆加固+仰斜式排水孔+综合截排水措施,其它为路面恢复、综合交安。       本次设计方案验算是基于勘察成果所提供的岩土参数进行支挡后的稳定性计算,计算考虑2种工况:一、支挡+自重+天然状态;二、支挡+自重+饱水状态,计算方法采用折线法(不平衡推力法隐式),结算结果汇总如下:五、总结       本项目属于道路应急抢险修复工程。现场发现异常情况后,通过勘察了解场地地质构造及滑带土性质,从定性和定量角度分析了道路边坡的稳定性,从应急抢险角度出发,制定了钢管桩加挡墙的联合支挡形式。       本项目利用GEO5软件进行分析和验算,在场地评价和支护结构设计方面都起到了技术支撑作用,为设计方案提供了依据,最终方案已指导现场顺利施工。现场施工照片

基于静力平衡法的带拉杆板桩嵌固深度及内力的手算与GEO5电算对比

南京库仑张工 发表了文章 • 0 个评论 • 456 次浏览 • 2024-08-21 17:46 • 来自相关话题

       按照《建筑边坡工程技术规范》(GB50330-2013)附录F的规定,对板肋式及桩锚式挡墙,当立柱嵌入深度较小时,视立柱下端为自由端,可以采用静力平衡法计算,当立柱嵌入深度较大时,视立柱下端为固定端,按等值梁法计算。       在GEO5软件当中,采用深基坑支护结构设计模块,根据底部固支或铰支情况可以分别模拟支锚式支挡结构的等值梁法和静力平衡法分析。这里选取某典型案例,进行静力平衡法手算和软件计算的对比分析。1、案例介绍       一个下端自由支撑,上部有锚定拉杆的板桩挡土墙,如下图所示,周围土重度γ=19kN/m³,φ=30°,粘聚力c=0,锚定拉杆距地面1m,水平间距a=2.5m,基坑开挖深度为h=8m,请采用静力平衡法计算桩墙的入土深度和桩身内力。2、手算过程(1)土压力计算主动土压力:被动土压力:(2)外力对支撑点取矩       其中被动土压力折减系数取K=2,将d=1、h=8以及Ea和Ep的式子代入上式,解得三次方程:求解后得到桩的入土深度为。水平支撑的作用力:桩身最大弯矩处即是剪力为0点,设该点到地面的距离为h0。 最大弯矩3、GEO5建模计算       打开深基坑支护结构设计模块,输入土层材料参数,设置基坑开挖深度和锚杆位置及间距。       岩土作用力选择主动土压力,分布形式选择最左侧常规的三角形分布。       点击分析,结构底端支座类型选择铰支,被动土压力折减系数输入0.5,自动得到嵌固深度t=5.52m,水平支撑作用力为361.36kN,单位宽度弯矩最大值为505.97kNm。4、对比分析       将手算和GEO5计算得到的几个关键指标进行对比,做误差分析,可以得到如下结果:针对嵌固深度,两者计算基本一致,对于水平支撑作用力和最大弯矩值,两者计算误差在1%左右。       相比手算过程,使用GEO5分析计算更加快捷直观,同时还支持添加更为复杂的外部环境,比如超载,地下水作用等。 查看全部
       按照《建筑边坡工程技术规范》(GB50330-2013)附录F的规定,对板肋式及桩锚式挡墙,当立柱嵌入深度较小时,视立柱下端为自由端,可以采用静力平衡法计算,当立柱嵌入深度较大时,视立柱下端为固定端,按等值梁法计算。       在GEO5软件当中,采用深基坑支护结构设计模块,根据底部固支或铰支情况可以分别模拟支锚式支挡结构的等值梁法和静力平衡法分析。这里选取某典型案例,进行静力平衡法手算和软件计算的对比分析。1、案例介绍       一个下端自由支撑,上部有锚定拉杆的板桩挡土墙,如下图所示,周围土重度γ=19kN/m³,φ=30°,粘聚力c=0,锚定拉杆距地面1m,水平间距a=2.5m,基坑开挖深度为h=8m,请采用静力平衡法计算桩墙的入土深度和桩身内力。2、手算过程(1)土压力计算主动土压力:被动土压力:(2)外力对支撑点取矩       其中被动土压力折减系数取K=2,将d=1、h=8以及Ea和Ep的式子代入上式,解得三次方程:求解后得到桩的入土深度为。水平支撑的作用力:桩身最大弯矩处即是剪力为0点,设该点到地面的距离为h0。 最大弯矩3、GEO5建模计算       打开深基坑支护结构设计模块,输入土层材料参数,设置基坑开挖深度和锚杆位置及间距。       岩土作用力选择主动土压力,分布形式选择最左侧常规的三角形分布。       点击分析,结构底端支座类型选择铰支,被动土压力折减系数输入0.5,自动得到嵌固深度t=5.52m,水平支撑作用力为361.36kN,单位宽度弯矩最大值为505.97kNm。4、对比分析       将手算和GEO5计算得到的几个关键指标进行对比,做误差分析,可以得到如下结果:针对嵌固深度,两者计算基本一致,对于水平支撑作用力和最大弯矩值,两者计算误差在1%左右。       相比手算过程,使用GEO5分析计算更加快捷直观,同时还支持添加更为复杂的外部环境,比如超载,地下水作用等。

地震动水压力的计算及在GEO5中的使用

南京库仑张工 发表了文章 • 0 个评论 • 590 次浏览 • 2024-08-21 17:16 • 来自相关话题

       在对支挡结构进行地震工况的分析时,不仅要考虑地震对结构自身的影响以及地震土压力的影响,如果环境中有地下水或地表水,还需要考虑地震动水压力的影响。本文参考国内各行业规范及国际通用方法,对地震动水压力的计算及在GEO5软件中的使用进行说明。1. 国际通用方法       根据物部-冈部(Mononobe-Okabe)或者 Arango提出的方法,地震动水压力呈抛物线分布,简化为梯形分布后,作用在结构后面的动水压力合力可以表示为:其中: γw-水的容重kh-水平地震加速度系数H-结构的高度合力作用点位置距离墙踵的距离为0.4H。2. 国内规范方法       国内地震动水压力的计算根据不同行业规范略有差异,但总体上与国际通用方法相匹配。以下分别论述。2.1 《水工建筑物抗震设计标准》(GB51247-2018)(1)拟静力法       根据规范7.1.12节的论述,当采用拟静力法计算重力坝地震作用效应时,水深h处的地震动水压力可表示为:其中:Pw(h)--   作用在直立迎水坝面水深h处的地震动水压力代表值-- 水平向设计地震加速度代表值 --  地震作用的效应折减系数,动力法计算地震作用效应时取为1.00;拟静力法计算地震作用效应时取为0.25--   水深h处的地震动水压力分布系数,应按表7.1.12的规定取值--   水体质量密度标准值H0--  水深       那么单位宽度坝面的总地震动水压力可以表示为合力作用点在水下0.54H0处。       这个合力的计算实际上是将表格7.1.12的分布系数在总深度或总墙高范围内进行积分计算的结果,类似如下分析,感兴趣的工程师可以自行作图计算。(2)动力法       根据规范7.1.14的论述,采用动力法时,水深h处的水平向地震动水压力按下式计算       规范中没有提总的动水压力,但将上式在总深度H0范围内积分得到       可以看出采用动力法计算得到的总动水压力跟国际通用方法是一致的。       此外,规范《水电工程水工建筑物抗震设计规范》(NB35047-2015)跟上述国标要求一致。2.2 《水运工程抗震设计规范》(JTS146-2012)       根据规范5.4节的论述,作用在直墙式建筑物上的地震动水压力强度、总动水压力可以分别按下式计算:其中C为综合影响系数,取0.25,η取1。        跟水工建筑物抗震设计标准中的动力法对比,可以发现水运行业的计算公式除了多了一个综合影响系数,其他都一致。相当于采用水运公式计算,将动水压力进行了折减。2.3 其他规范       在《铁路工程抗震设计规范》(50111-2006(2009年版))以及《公路工程抗震设计规范》中,对地震动水压力也有论述,但只针对桥梁工程,并不适用于常规岩土支挡结构设计,此处不再引用。3. GEO5中的使用       在分析设置中,用户可以指定地震荷载分析时采用的规范,对于地震动水压力计算,当选择Mononobe-Okabe、 Arango以及NCMA-SRW美标规范时,动水压力都按本文第一节提到的国际通用方法计算,当选择国内水运规范计算时,软件按照2.2节水运规范的公式计算,当选择水电规范时,软件按照水2.1节中拟静力法的公式计算。选择其他行业规范时,默认参考2.1节水电行业动力法的公式计算。       另外,在GEO5软件当中,还需要注意两点:①当墙前有地下水时,软件将计算地震影响下作用在挡墙前面的动水压力;②当墙后土体渗透性较低时,如果不考虑动水压力的影响,此时在地震荷载界面中的地震动水压力中选择承压水(土体渗透性差),反之选择自由水(土体渗透性好)。 查看全部
       在对支挡结构进行地震工况的分析时,不仅要考虑地震对结构自身的影响以及地震土压力的影响,如果环境中有地下水或地表水,还需要考虑地震动水压力的影响。本文参考国内各行业规范及国际通用方法,对地震动水压力的计算及在GEO5软件中的使用进行说明。1. 国际通用方法       根据物部-冈部(Mononobe-Okabe)或者 Arango提出的方法,地震动水压力呈抛物线分布,简化为梯形分布后,作用在结构后面的动水压力合力可以表示为:其中: γw-水的容重kh-水平地震加速度系数H-结构的高度合力作用点位置距离墙踵的距离为0.4H。2. 国内规范方法       国内地震动水压力的计算根据不同行业规范略有差异,但总体上与国际通用方法相匹配。以下分别论述。2.1 《水工建筑物抗震设计标准》(GB51247-2018)(1)拟静力法       根据规范7.1.12节的论述,当采用拟静力法计算重力坝地震作用效应时,水深h处的地震动水压力可表示为:其中:Pw(h)--   作用在直立迎水坝面水深h处的地震动水压力代表值-- 水平向设计地震加速度代表值 --  地震作用的效应折减系数,动力法计算地震作用效应时取为1.00;拟静力法计算地震作用效应时取为0.25--   水深h处的地震动水压力分布系数,应按表7.1.12的规定取值--   水体质量密度标准值H0--  水深       那么单位宽度坝面的总地震动水压力可以表示为合力作用点在水下0.54H0处。       这个合力的计算实际上是将表格7.1.12的分布系数在总深度或总墙高范围内进行积分计算的结果,类似如下分析,感兴趣的工程师可以自行作图计算。(2)动力法       根据规范7.1.14的论述,采用动力法时,水深h处的水平向地震动水压力按下式计算       规范中没有提总的动水压力,但将上式在总深度H0范围内积分得到       可以看出采用动力法计算得到的总动水压力跟国际通用方法是一致的。       此外,规范《水电工程水工建筑物抗震设计规范》(NB35047-2015)跟上述国标要求一致。2.2 《水运工程抗震设计规范》(JTS146-2012)       根据规范5.4节的论述,作用在直墙式建筑物上的地震动水压力强度、总动水压力可以分别按下式计算:其中C为综合影响系数,取0.25,η取1。        跟水工建筑物抗震设计标准中的动力法对比,可以发现水运行业的计算公式除了多了一个综合影响系数,其他都一致。相当于采用水运公式计算,将动水压力进行了折减。2.3 其他规范       在《铁路工程抗震设计规范》(50111-2006(2009年版))以及《公路工程抗震设计规范》中,对地震动水压力也有论述,但只针对桥梁工程,并不适用于常规岩土支挡结构设计,此处不再引用。3. GEO5中的使用       在分析设置中,用户可以指定地震荷载分析时采用的规范,对于地震动水压力计算,当选择Mononobe-Okabe、 Arango以及NCMA-SRW美标规范时,动水压力都按本文第一节提到的国际通用方法计算,当选择国内水运规范计算时,软件按照2.2节水运规范的公式计算,当选择水电规范时,软件按照水2.1节中拟静力法的公式计算。选择其他行业规范时,默认参考2.1节水电行业动力法的公式计算。       另外,在GEO5软件当中,还需要注意两点:①当墙前有地下水时,软件将计算地震影响下作用在挡墙前面的动水压力;②当墙后土体渗透性较低时,如果不考虑动水压力的影响,此时在地震荷载界面中的地震动水压力中选择承压水(土体渗透性差),反之选择自由水(土体渗透性好)。

GEO5自定义柱状图出图方法——以水文地质钻孔为例

南京库仑张工 发表了文章 • 0 个评论 • 382 次浏览 • 2024-08-21 17:00 • 来自相关话题

       GEO5 2024版丰富了三维地质建模模块的自定义数据结构功能,以柱状图为例,用户可自行配置表头数据内容,自定义列的数据类型和绘图样式,本文以某水文地质钻孔为例,说明在GEO5中如何自定义柱状图出图。某水文地质钻孔1 编辑模版1.1 创建新的模板       打开三维地质建模模块,在右侧【模式】选项框中选择【模板】选项,可以看到界面模版默认为“中国-标准”,点击【复制并编辑当前模版并添加到模版管理器】,此处自定义模版命名为“水文钻孔模版”。       将模版保存后再打开,选中编号2的水井,点击【编辑】,弹出如下图所示窗口。1.2 自定义用户数据       上图左侧即为软件自带水井模版的数据内容和类型,结合本文要定义的水文地质钻孔样式,不需要自带的地下水位、外套管、井口和井底、数据-规程选项等内容,选中相关字段,点击右侧的【删除】选项。另外,还需要增加“岩芯采取率”、“电测深曲线”两个字段和表头的相关钻孔信息,点击【添加】,输入方法选择【创建新的本地数据字段】。       点击【下一个】,弹出窗口中,类型选择【表格】,表格类型选择【带深度】,名称命名为“岩芯采取率”,点击右侧【添加】选项,增加表格列,输入方法仍选择【创建新的本地数据字段】,类型选择【数字】,名称输入“岩芯采取率”,小数位数均设置为0。点击【确定】,最后点击【添加】即完成“岩芯采取率”数据字段的添加,“电测深曲线”字段类似,这里不再赘述。       针对表头的钻孔信息,我们可以单独定义一个【组】,把表头相关的所有信息都放到里面,数据类型可以都选择字符串形式。1.3 自定义出图样式       定义好数据字段后,接下来对出图样式进行编辑。删掉原有的柱状图出图样式,点击【添加】。       我们先定义表头菜单,表头的编辑和操作方法和EXCEL表格非常类似。用户可以自定义行、列及其他维度的信息,可以合并和拆分单元格,自定义框架和背景颜色等。       根据需要,表头总共3行8列。局部区域合并单元格后,效果如下图所示。      表格里的数据字段可以直接选择之前定义好的内容,以“钻孔类型”为例,选中A1单元格,点击【插入字段】,选择【试验数据—名称】里的“钻孔信息——钻孔类型”,点击【确定】即可。该窗口中还可以调整文字颜色、样式、大小等格式。在B1单元格中,选择【试验数据—数据】,用于存储钻孔类型的实际值。       其他表头内容定义方式一样,定义完成后,得到表头样式如下,由于这是定义的模板,数据栏还没有录入数据,所以显示“Lorem ipsum”的空字符。       接下来,定义列。点击面板最右侧【添加】,将新增的表格类型改为“列”,按照水文钻孔柱状图样例,需要显示7列数据,包括“地层时代”、“厚度”、“地层柱状”、“岩性描述”、“岩芯采取率”、“电测深曲线”和“成井结构”,因绘图需要,将“地层柱状”和“岩芯采取率”按2列输入,“成井结构”按3列输入,总共需要输入11列。       这里以第一列“地层时代”为例,列名称直接输入“地层时代”,列内容中,列类型选择【钻孔柱状图】,图案选择【地层/岩土材料图例】,插入字段选择【表格属性-数据】中的【地层描述】,即后续地层时代在地层描述中输入即可。       其他列类似操作,需要注意的是,当需要选择深度坐标轴时,比如“地层柱状”和“岩芯采取率”左侧均有深度坐标,列的名称可以留空,列内容直接在类型中选择【深度坐标轴】。       当输入列内容为“岩芯采取率”和“电测深曲线”时,列类型注意选择【深度图标】,在【添加系列】时选择相应的内容。       当列定义完成后,如下图所示。       根据表格样式,调整每列的相对宽度,得到更美观的表格样式。       自此,整个出图样式就定义完成,将出图规程的名称定义为“水文钻孔”,规程类别选择【柱状剖面】。2 录入数据       在【勘察数据】中录入水文钻孔的数据信息,点击【添加】,选择【水井】,在弹出的窗口中录入相关信息,可以看到自定义的钻孔信息、岩芯采取率和电测深曲线都在目录内。2.1 录入基础信息       录入钻孔信息,直接输入文字或者数字。       录入地层信息,输入不同深度的的岩土材料,选择相应的颜色和花纹,地层描述中备注地质年代。       录入成井结构的花纹样式,可以在图例中选择类似的样式,也可以用纯色的形式模拟。2.2 录入深度数据       对于岩芯采取率和电测深曲线,需要录入随深度的变化数据,这里可以导入excel数据或者进行单个录入。3 出图效果       录入完数据后,保存信息,到【柱状剖面】界面中,选中该钻孔,选择【打印日志】,即可得到柱状图。       柱状图效果如下,对于填充效果、文字大小和线性属性还可以在模板中人为调整。       图件可以保存为PDF或者word格式,其他的钻孔录入数据后,就可以用已经定义好的模版进行批量的出图。 查看全部
       GEO5 2024版丰富了三维地质建模模块的自定义数据结构功能,以柱状图为例,用户可自行配置表头数据内容,自定义列的数据类型和绘图样式,本文以某水文地质钻孔为例,说明在GEO5中如何自定义柱状图出图。某水文地质钻孔1 编辑模版1.1 创建新的模板       打开三维地质建模模块,在右侧【模式】选项框中选择【模板】选项,可以看到界面模版默认为“中国-标准”,点击【复制并编辑当前模版并添加到模版管理器】,此处自定义模版命名为“水文钻孔模版”。       将模版保存后再打开,选中编号2的水井,点击【编辑】,弹出如下图所示窗口。1.2 自定义用户数据       上图左侧即为软件自带水井模版的数据内容和类型,结合本文要定义的水文地质钻孔样式,不需要自带的地下水位、外套管、井口和井底、数据-规程选项等内容,选中相关字段,点击右侧的【删除】选项。另外,还需要增加“岩芯采取率”、“电测深曲线”两个字段和表头的相关钻孔信息,点击【添加】,输入方法选择【创建新的本地数据字段】。       点击【下一个】,弹出窗口中,类型选择【表格】,表格类型选择【带深度】,名称命名为“岩芯采取率”,点击右侧【添加】选项,增加表格列,输入方法仍选择【创建新的本地数据字段】,类型选择【数字】,名称输入“岩芯采取率”,小数位数均设置为0。点击【确定】,最后点击【添加】即完成“岩芯采取率”数据字段的添加,“电测深曲线”字段类似,这里不再赘述。       针对表头的钻孔信息,我们可以单独定义一个【组】,把表头相关的所有信息都放到里面,数据类型可以都选择字符串形式。1.3 自定义出图样式       定义好数据字段后,接下来对出图样式进行编辑。删掉原有的柱状图出图样式,点击【添加】。       我们先定义表头菜单,表头的编辑和操作方法和EXCEL表格非常类似。用户可以自定义行、列及其他维度的信息,可以合并和拆分单元格,自定义框架和背景颜色等。       根据需要,表头总共3行8列。局部区域合并单元格后,效果如下图所示。      表格里的数据字段可以直接选择之前定义好的内容,以“钻孔类型”为例,选中A1单元格,点击【插入字段】,选择【试验数据—名称】里的“钻孔信息——钻孔类型”,点击【确定】即可。该窗口中还可以调整文字颜色、样式、大小等格式。在B1单元格中,选择【试验数据—数据】,用于存储钻孔类型的实际值。       其他表头内容定义方式一样,定义完成后,得到表头样式如下,由于这是定义的模板,数据栏还没有录入数据,所以显示“Lorem ipsum”的空字符。       接下来,定义列。点击面板最右侧【添加】,将新增的表格类型改为“列”,按照水文钻孔柱状图样例,需要显示7列数据,包括“地层时代”、“厚度”、“地层柱状”、“岩性描述”、“岩芯采取率”、“电测深曲线”和“成井结构”,因绘图需要,将“地层柱状”和“岩芯采取率”按2列输入,“成井结构”按3列输入,总共需要输入11列。       这里以第一列“地层时代”为例,列名称直接输入“地层时代”,列内容中,列类型选择【钻孔柱状图】,图案选择【地层/岩土材料图例】,插入字段选择【表格属性-数据】中的【地层描述】,即后续地层时代在地层描述中输入即可。       其他列类似操作,需要注意的是,当需要选择深度坐标轴时,比如“地层柱状”和“岩芯采取率”左侧均有深度坐标,列的名称可以留空,列内容直接在类型中选择【深度坐标轴】。       当输入列内容为“岩芯采取率”和“电测深曲线”时,列类型注意选择【深度图标】,在【添加系列】时选择相应的内容。       当列定义完成后,如下图所示。       根据表格样式,调整每列的相对宽度,得到更美观的表格样式。       自此,整个出图样式就定义完成,将出图规程的名称定义为“水文钻孔”,规程类别选择【柱状剖面】。2 录入数据       在【勘察数据】中录入水文钻孔的数据信息,点击【添加】,选择【水井】,在弹出的窗口中录入相关信息,可以看到自定义的钻孔信息、岩芯采取率和电测深曲线都在目录内。2.1 录入基础信息       录入钻孔信息,直接输入文字或者数字。       录入地层信息,输入不同深度的的岩土材料,选择相应的颜色和花纹,地层描述中备注地质年代。       录入成井结构的花纹样式,可以在图例中选择类似的样式,也可以用纯色的形式模拟。2.2 录入深度数据       对于岩芯采取率和电测深曲线,需要录入随深度的变化数据,这里可以导入excel数据或者进行单个录入。3 出图效果       录入完数据后,保存信息,到【柱状剖面】界面中,选中该钻孔,选择【打印日志】,即可得到柱状图。       柱状图效果如下,对于填充效果、文字大小和线性属性还可以在模板中人为调整。       图件可以保存为PDF或者word格式,其他的钻孔录入数据后,就可以用已经定义好的模版进行批量的出图。

衡重式挡土墙,墙后采用孔隙水压力模拟剩余下滑力时,土楔是倾斜还是竖直?

南京库仑张工 回答了问题 • 2 人关注 • 1 个回答 • 411 次浏览 • 2024-07-23 09:53 • 来自相关话题

请问optumg2如何模拟桩基静载试验?

南京库仑张工 回答了问题 • 2 人关注 • 1 个回答 • 447 次浏览 • 2024-07-23 09:44 • 来自相关话题

请问optumg2在模拟主动土压力时会出现下限解大于上限解的情况是怎么一回事

南京库仑张工 回答了问题 • 2 人关注 • 1 个回答 • 575 次浏览 • 2024-06-27 17:03 • 来自相关话题

关于锚索预应力的问题

库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 967 次浏览 • 2024-06-25 16:30 • 来自相关话题

用边坡开挖状态的最大剩余下滑力对应的滑面做锚索支护设计可以吗?

tangyuxi 回答了问题 • 2 人关注 • 3 个回答 • 3564 次浏览 • 2024-05-07 11:05 • 来自相关话题

几何对称模型的剪切耗散不对称

南京库仑张工 回答了问题 • 2 人关注 • 1 个回答 • 791 次浏览 • 2024-04-11 10:10 • 来自相关话题

泡沫轻质土

库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 1041 次浏览 • 2024-04-02 09:53 • 来自相关话题

基坑降水分析降水井设置问题

南京库仑张工 回答了问题 • 2 人关注 • 1 个回答 • 1048 次浏览 • 2024-01-24 18:52 • 来自相关话题

桩基础水平变形限值——欧标&美标

库仑赵 发表了文章 • 0 个评论 • 777 次浏览 • 2024-01-22 11:21 • 来自相关话题

       受水平荷载影响的桩基础一般会涉及水平变形的评价,在这里给出常见的欧标&美标的水平变形限值要求,方便工程师在海外项目中采用。本文中给出的是建议值,实际工程中仍需要根据工程要求、国家及地区相关规定对限值进行调整。1 美标      具体要求可参见《The Engineering of Foundations , Slopes and Retaining Structures -CRC Press》,如下图:2 欧标       欧标涉及的国家较多,这里给一个统领规范EN1997中的指导性值。 查看全部
       受水平荷载影响的桩基础一般会涉及水平变形的评价,在这里给出常见的欧标&美标的水平变形限值要求,方便工程师在海外项目中采用。本文中给出的是建议值,实际工程中仍需要根据工程要求、国家及地区相关规定对限值进行调整。1 美标      具体要求可参见《The Engineering of Foundations , Slopes and Retaining Structures -CRC Press》,如下图:2 欧标       欧标涉及的国家较多,这里给一个统领规范EN1997中的指导性值。

美标桩基规范及原理

库仑赵 发表了文章 • 0 个评论 • 816 次浏览 • 2024-01-22 11:09 • 来自相关话题

       目前国内越来越多实力雄厚的设计研究院开始走出国门承接海外工程。桩基是海外工程中常见的设计方向,为方便广大海外项目用户更快熟悉欧标和美标相关规范关于桩基的相关理论。此次原理说明采用类比法,从工程师熟悉的中国规范方法类比到美标,掌握其中的异同点,以帮助工程师更快理解。部分重要参考文献列表如下:中国规范:《建筑桩基技术规范 JGJ 94-2008》《地基基础设计规范》附录R美标:NAVFAC DM 7.2, Foundation and Earth Structures, U.S. Department of the Navy 1984FHWA-NHI-16009Design and Construction of Driven Pile Foundation—volume I, Chapter7The Foundation Engineering Book, Chapter 6         一般规范主要由计算方法和验算方法两部分构成。对桩基规范来说,计算方法指承载力、沉降等计算方法(本次主要以解析法为主,不涉及弹性法内容);验算方法指安全系数法、分项系数法等。一、计算方法1、单桩(1)中国规范       中国规范桩基竖向承载力核心原理是:总承载力=桩侧承载力+桩端承载力。在《建筑桩基技术规范 JGJ 94-2008》中给出的计算公式如下:     拆分理解:       桩侧承载力=桩侧承载力参数*桩周长*有效侧阻桩长       桩端承载力=桩端承载力参数*桩端面积       在中国规范经验参数法中,桩侧承载力参数和桩端承载力参数由地区经验参数给出。如果采用静力触探等原位测试时,桩侧承载力参数和桩端承载力参数通常由原位测试值*修正系数得到。(2)美标       其核心原理同样是:总承载力=桩端承载力+桩侧承载力。拆分同样可以表达成:      桩侧承载力=桩侧承载力参数*桩周长*有效侧阻桩长      桩端承载力=桩端承载力参数*桩端面积       但和中国规范的区别在于桩侧承载力参数和桩端承载力参数的计算方式,美标大多数方法采用计算点位置处有效自重应力(无粘性土)或不排水强度(粘性土)乘以相应的端承或侧摩擦修正系数。这里以美标里面比较常用的NAVFAC DM 7.2 为例:1)桩侧承载力计算①对无粘性土:②对粘性土:2)桩端承载力计算①对无粘性土:②对粘性土:        以上便是美标计算方法的原理,其他如α,β,λ法均和此方法类似,均是用有效自重应力(无粘性土)或不排水强度(粘性土)乘以相应的端承或侧摩擦修正系数计算桩侧承载力参数和桩端承载力参数,但修正系数的表达形式略有不同,有兴趣的工程师可以自行了解。2、群桩(1)承载力计算1)中国规范      在计算群桩承载力时,将上部力平均至各个桩记为Nk,然后和Rg对比2)美标       由以上公式可见,相对于中国规范,美标在计算群桩承载力时多了一项修正系数,即群桩效应系数,其具体含义如下:(2)沉降1)中国规范2)美标       美标常用的方法和地基规范附录R中等代实体法一致,但是其扩散起始点不同。中国规范从承台底开始扩散,角度为φ/4;但是美标自承台低以下2L/3处开始扩散,角度为固定角度如下图:二、验算方法       通常情况下桩基的验算均采用安全系数法,美标也是如此。但如果监理要求美标计算情况下要采用分项系数法时,设计状况和分项系数如下所示:(1)Strength limit state(2)Service I Limit State         以上便是美标桩基规范基本原理,编者水平有限,有错误请随时指正。想要了解更多深入内容或结合GEO5的软件操作,请加入GEO5海外规范交流群:QQ273013644 查看全部
       目前国内越来越多实力雄厚的设计研究院开始走出国门承接海外工程。桩基是海外工程中常见的设计方向,为方便广大海外项目用户更快熟悉欧标和美标相关规范关于桩基的相关理论。此次原理说明采用类比法,从工程师熟悉的中国规范方法类比到美标,掌握其中的异同点,以帮助工程师更快理解。部分重要参考文献列表如下:中国规范:《建筑桩基技术规范 JGJ 94-2008》《地基基础设计规范》附录R美标:NAVFAC DM 7.2, Foundation and Earth Structures, U.S. Department of the Navy 1984FHWA-NHI-16009Design and Construction of Driven Pile Foundation—volume I, Chapter7The Foundation Engineering Book, Chapter 6         一般规范主要由计算方法和验算方法两部分构成。对桩基规范来说,计算方法指承载力、沉降等计算方法(本次主要以解析法为主,不涉及弹性法内容);验算方法指安全系数法、分项系数法等。一、计算方法1、单桩(1)中国规范       中国规范桩基竖向承载力核心原理是:总承载力=桩侧承载力+桩端承载力。在《建筑桩基技术规范 JGJ 94-2008》中给出的计算公式如下:     拆分理解:       桩侧承载力=桩侧承载力参数*桩周长*有效侧阻桩长       桩端承载力=桩端承载力参数*桩端面积       在中国规范经验参数法中,桩侧承载力参数和桩端承载力参数由地区经验参数给出。如果采用静力触探等原位测试时,桩侧承载力参数和桩端承载力参数通常由原位测试值*修正系数得到。(2)美标       其核心原理同样是:总承载力=桩端承载力+桩侧承载力。拆分同样可以表达成:      桩侧承载力=桩侧承载力参数*桩周长*有效侧阻桩长      桩端承载力=桩端承载力参数*桩端面积       但和中国规范的区别在于桩侧承载力参数和桩端承载力参数的计算方式,美标大多数方法采用计算点位置处有效自重应力(无粘性土)或不排水强度(粘性土)乘以相应的端承或侧摩擦修正系数。这里以美标里面比较常用的NAVFAC DM 7.2 为例:1)桩侧承载力计算①对无粘性土:②对粘性土:2)桩端承载力计算①对无粘性土:②对粘性土:        以上便是美标计算方法的原理,其他如α,β,λ法均和此方法类似,均是用有效自重应力(无粘性土)或不排水强度(粘性土)乘以相应的端承或侧摩擦修正系数计算桩侧承载力参数和桩端承载力参数,但修正系数的表达形式略有不同,有兴趣的工程师可以自行了解。2、群桩(1)承载力计算1)中国规范      在计算群桩承载力时,将上部力平均至各个桩记为Nk,然后和Rg对比2)美标       由以上公式可见,相对于中国规范,美标在计算群桩承载力时多了一项修正系数,即群桩效应系数,其具体含义如下:(2)沉降1)中国规范2)美标       美标常用的方法和地基规范附录R中等代实体法一致,但是其扩散起始点不同。中国规范从承台底开始扩散,角度为φ/4;但是美标自承台低以下2L/3处开始扩散,角度为固定角度如下图:二、验算方法       通常情况下桩基的验算均采用安全系数法,美标也是如此。但如果监理要求美标计算情况下要采用分项系数法时,设计状况和分项系数如下所示:(1)Strength limit state(2)Service I Limit State         以上便是美标桩基规范基本原理,编者水平有限,有错误请随时指正。想要了解更多深入内容或结合GEO5的软件操作,请加入GEO5海外规范交流群:QQ273013644

GEO5拟静力法分析爆破工况

南京库仑张工 发表了文章 • 0 个评论 • 868 次浏览 • 2024-01-09 14:29 • 来自相关话题

       近期有多位工程师咨询在GEO5当中如何模拟爆破工况,如果是采用拟静力法考虑爆破振动力,可以通过GEO5地震荷载中自定义水平地震系数的方法实现,本文将简述分析过程。1. 计算原理       根据《非煤露天矿边坡工程技术规范》(GB 51016-2014)附录D.2的说明,边坡稳定计算时,考虑爆破振动力,各条快的水平爆破力按下列公式计算式中:Fi’—第i条块爆破振动力的水平向等效静力(kN);Wi—第i条块的重量;βi—第i条块爆破力系数,可取0.1~0.3;ai—第i条块爆破振动质点水平向最大加速度(m/s2);g—重力加速度(m/s2);f—振动爆破频率(Hz);Vi—第i条块重心处质点向振动速度(cm/s);Q—爆破装药量,分段延时爆破时取最大一段的装药量(kg);Ri—爆破区药量分布的几何中心至观测点的距离;K、α—与采场地质条件、岩体性质、爆破条件等有关的系数,由振动检测和测试数据获取。2. 案例分析       某砂岩矿边坡坡高55m,根据初步设计,矿山采用分段逐孔起爆,最大一段(单孔)用药量为56.3kg,按《爆破安全规程》(GB6722-2014)取振动爆破频率为20Hz。爆破区药量分布的几何中心至观测点的综合距离取值为90m。参考《爆破安全规程》13.2.4参数建议值说明,K取150,α取1.5。爆破区不同岩性的K,α取值建议根据以上参数,另外βi取0.12,计算得到       打开GEO5土坡模块,建好模型后,将0.02直接输入到地震分析当中进行计算。       以上即为GEO5当中模拟爆破工况分析的方法,文中提到的两本规范电子版可点击下载:GB 51016-2014 非煤露天矿边坡工程技术规范.pdf爆破安全规程GB6722-2014.pdf 查看全部
       近期有多位工程师咨询在GEO5当中如何模拟爆破工况,如果是采用拟静力法考虑爆破振动力,可以通过GEO5地震荷载中自定义水平地震系数的方法实现,本文将简述分析过程。1. 计算原理       根据《非煤露天矿边坡工程技术规范》(GB 51016-2014)附录D.2的说明,边坡稳定计算时,考虑爆破振动力,各条快的水平爆破力按下列公式计算式中:Fi’—第i条块爆破振动力的水平向等效静力(kN);Wi—第i条块的重量;βi—第i条块爆破力系数,可取0.1~0.3;ai—第i条块爆破振动质点水平向最大加速度(m/s2);g—重力加速度(m/s2);f—振动爆破频率(Hz);Vi—第i条块重心处质点向振动速度(cm/s);Q—爆破装药量,分段延时爆破时取最大一段的装药量(kg);Ri—爆破区药量分布的几何中心至观测点的距离;K、α—与采场地质条件、岩体性质、爆破条件等有关的系数,由振动检测和测试数据获取。2. 案例分析       某砂岩矿边坡坡高55m,根据初步设计,矿山采用分段逐孔起爆,最大一段(单孔)用药量为56.3kg,按《爆破安全规程》(GB6722-2014)取振动爆破频率为20Hz。爆破区药量分布的几何中心至观测点的综合距离取值为90m。参考《爆破安全规程》13.2.4参数建议值说明,K取150,α取1.5。爆破区不同岩性的K,α取值建议根据以上参数,另外βi取0.12,计算得到       打开GEO5土坡模块,建好模型后,将0.02直接输入到地震分析当中进行计算。       以上即为GEO5当中模拟爆破工况分析的方法,文中提到的两本规范电子版可点击下载:GB 51016-2014 非煤露天矿边坡工程技术规范.pdf爆破安全规程GB6722-2014.pdf