GEO5边坡

GEO5边坡

填方边坡设置三排钢管桩,桩顶布设钢筋混凝土联系梁,分析稳定性是用土坡模块还是抗滑桩模块?三排桩如何建模?

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 83 次浏览 • 2024-12-23 15:23 • 来自相关话题

剩余下滑力曲线在GEO5中的使用

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 276 次浏览 • 2024-11-06 10:14 • 来自相关话题

       不平衡推力方法(隐式&显式)是国内计算边坡和滑坡稳定性时常用的方法,在GEO5中,除了可以采用该方法对边坡稳定性进行计算,软件还可以给出沿滑动面的剩余下滑力传递曲线。部分工程师在使用时并不清楚怎么查看该曲线,也不明白其中原理,本文对此进行说明。1、如何在GEO5中查看剩余下滑力曲线       首先需要明确的是,不是所有计算方法都能得到该曲线。剩余下滑力实际是通过条块间条间力的传递而获得,所以用户必须使用考虑条间力的分析方法才能看到该曲线,最常用的就是不平衡推力方法,隐式和显式都可以,如果采用bishop法是看不到该曲线的,其他的严格条分法,例如M-P,简布法和斯宾塞法也都能获取该曲线。       当选择考虑条间力的方法计算之后,点击软件界面左侧面板中的齿轮按钮,勾选分析中的“剩余下滑力”和“数值”选项,那么就能在图形显示窗口中查看剩余下滑力曲线。2、剩余下滑力曲线的绘制原则       GEO5软件中剩余下滑力曲线绘制原理参考了《铁路路基支挡结构设计规范》中滑坡推力曲线的绘制方法。规范中的滑坡推力曲线       曲线范围从滑动面的剪入口开始一直到剪出口为止,分段数量等于条块数量,如果是圆弧滑动,在GEO5软件中默认分为20个条块。GEO5中绘制的剩余下滑力曲线有几点需要说明:①  软件绘制的是剩余下滑力曲线,并不是滑坡推力曲线,剩余下滑力和抗滑桩所受的滑坡推力之间还需要考虑所在条块滑面角度的影响;②  剩余下滑力曲线的形状和数值大小跟滑面位置、岩土材料参数、支护力的大小、设计安全系数取值等因素相关;③  当剪入口位置的条块自身稳定性大于设计安全系数时,该条块则无剩余下滑力,依此类推,直到出现条块稳定性小于设计安全系数时,剩余下滑力从正值绘制,也就是剪入口位置的条块剩余下滑力一定为非负值;④  当计算滑动面整体稳定性大于设计安全系数时,剪出口位置的剩余下滑力会为负值,这里并没归为0,是为了方便用户查看边坡的支护或者自身稳定有多大的余量。加了支护后的剩余下滑力曲线3、剩余下滑力曲线的应用(1)确定下滑段和阻滑段位置       最常见的剩余下滑力曲线就是先上升后下降的弧线,当遇到地形复杂,同时坡面叠加超载和支护结构的时候,曲线可能存在多个上升段和下降段,这里的上升段可以认为是下滑段,下降段可以认为是阻滑段。(2)确定桩后滑坡推力       当采用抗滑桩支挡时,桩后的滑坡推力大小为该桩设计位置条块的剩余下滑力乘以滑面倾角的余弦值。       除了滑坡推力,桩前实际还受到滑体抗力的作用,很多用户对于滑体抗力如何计算并不清楚,这里顺带做个说明。       以下图为例,这里对应着滑面绘制了4条曲线。曲线a是极限状态的传递曲线,特点是剪出口和剪入口位置力都为0,表征边坡实际状况,也就是曲线以边坡实际的稳定系数来绘制;曲线b为推力传递曲线,从剪入口开始到剪出口,以边坡设计安全系数绘制;曲线c为抗力传递曲线,从剪出口开始反向到剪入口,同样以边坡设计安全系数绘制;曲线d为推力和抗力在抗滑桩位置处的叠加曲线,其中T为滑坡推力,P就是滑体抗力,d曲线为抗滑桩刚好达到边坡稳定系数等于设计安全系数的支撑效果,但不一定意味着桩的极限状态。       根据曲线可以看出T,P的数值跟设桩位置相关,同时跟设计安全系数的取值相关,简单理解为1.35的设计安全系数会比1.2的设计安全系数得到的推力更大。而抗力是否也会随着设计安全系数提高而增大呢,分两种情况,当桩前块体仍然满足增大后的设计安全系数时,抗力则相应增大,当桩前块体达不到增大后的设计安全系数时,抗力不仅不会增大,而是直接为0,这就是用户在查看抗滑桩受力时遇到桩前为0的原因。(3)其他应用       除了通过剩余下滑力曲线区分抗滑段与阻滑段,确定滑坡推力之外,还可以通过曲线下降的斜率判断不同区域的抗滑效果,哪些区段采用削方减载效果会更好,抗滑桩设置于哪些地段效率更高。尤其是对于滑坡整治项目,可以充分利用下滑力曲线进行辅助分析。 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp;不平衡推力方法(隐式&amp;显式)是国内计算边坡和滑坡稳定性时常用的方法,在GEO5中,除了可以采用该方法对边坡稳定性进行计算,软件还可以给出沿滑动面的剩余下滑力传递曲线。部分工程师在使用时并不清楚怎么查看该曲线,也不明白其中原理,本文对此进行说明。</p><p>1、如何在GEO5中查看剩余下滑力曲线</p><p>&nbsp; &nbsp; &nbsp; &nbsp;首先需要明确的是,不是所有计算方法都能得到该曲线。剩余下滑力实际是通过条块间条间力的传递而获得,所以用户必须使用考虑条间力的分析方法才能看到该曲线,最常用的就是不平衡推力方法,隐式和显式都可以,如果采用bishop法是看不到该曲线的,其他的严格条分法,例如M-P,简布法和斯宾塞法也都能获取该曲线。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730858794347194.png" alt="image.png" width="504" height="324" style="width: 504px; height: 324px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;当选择考虑条间力的方法计算之后,点击软件界面左侧面板中的齿轮按钮,勾选分析中的“剩余下滑力”和“数值”选项,那么就能在图形显示窗口中查看剩余下滑力曲线。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730858828364736.png" alt="image.png"/></p><p>2、剩余下滑力曲线的绘制原则</p><p>&nbsp; &nbsp; &nbsp; &nbsp;GEO5软件中剩余下滑力曲线绘制原理参考了《铁路路基支挡结构设计规范》中滑坡推力曲线的绘制方法。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730859036672758.png" alt="image.png"/></p><p style="text-align: center;">规范中的滑坡推力曲线</p><p>&nbsp; &nbsp; &nbsp; &nbsp;曲线范围从滑动面的剪入口开始一直到剪出口为止,分段数量等于条块数量,如果是圆弧滑动,在GEO5软件中默认分为20个条块。GEO5中绘制的剩余下滑力曲线有几点需要说明:</p><p>①&nbsp; 软件绘制的是剩余下滑力曲线,并不是滑坡推力曲线,剩余下滑力和抗滑桩所受的滑坡推力之间还需要考虑所在条块滑面角度的影响;</p><p>②&nbsp; 剩余下滑力曲线的形状和数值大小跟滑面位置、岩土材料参数、支护力的大小、设计安全系数取值等因素相关;</p><p>③&nbsp; 当剪入口位置的条块自身稳定性大于设计安全系数时,该条块则无剩余下滑力,依此类推,直到出现条块稳定性小于设计安全系数时,剩余下滑力从正值绘制,也就是剪入口位置的条块剩余下滑力一定为非负值;</p><p>④&nbsp; 当计算滑动面整体稳定性大于设计安全系数时,剪出口位置的剩余下滑力会为负值,这里并没归为0,是为了方便用户查看边坡的支护或者自身稳定有多大的余量。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730859156395858.png" alt="image.png"/></p><p style="text-align: center;">加了支护后的剩余下滑力曲线</p><p>3、剩余下滑力曲线的应用</p><p>(1)确定下滑段和阻滑段位置</p><p>&nbsp; &nbsp; &nbsp; &nbsp;最常见的剩余下滑力曲线就是先上升后下降的弧线,当遇到地形复杂,同时坡面叠加超载和支护结构的时候,曲线可能存在多个上升段和下降段,这里的上升段可以认为是下滑段,下降段可以认为是阻滑段。</p><p>(2)确定桩后滑坡推力</p><p>&nbsp; &nbsp; &nbsp; &nbsp;当采用抗滑桩支挡时,桩后的滑坡推力大小为该桩设计位置条块的剩余下滑力乘以滑面倾角的余弦值。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;除了滑坡推力,桩前实际还受到滑体抗力的作用,很多用户对于滑体抗力如何计算并不清楚,这里顺带做个说明。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;以下图为例,这里对应着滑面绘制了4条曲线。曲线a是极限状态的传递曲线,特点是剪出口和剪入口位置力都为0,表征边坡实际状况,也就是曲线以边坡实际的稳定系数来绘制;曲线b为推力传递曲线,从剪入口开始到剪出口,以边坡设计安全系数绘制;曲线c为抗力传递曲线,从剪出口开始反向到剪入口,同样以边坡设计安全系数绘制;曲线d为推力和抗力在抗滑桩位置处的叠加曲线,其中T为滑坡推力,P就是滑体抗力,d曲线为抗滑桩刚好达到边坡稳定系数等于设计安全系数的支撑效果,但不一定意味着桩的极限状态。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730859231836626.png" alt="image.png" width="432" height="421" style="width: 432px; height: 421px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据曲线可以看出T,P的数值跟设桩位置相关,同时跟设计安全系数的取值相关,简单理解为1.35的设计安全系数会比1.2的设计安全系数得到的推力更大。而抗力是否也会随着设计安全系数提高而增大呢,分两种情况,当桩前块体仍然满足增大后的设计安全系数时,抗力则相应增大,当桩前块体达不到增大后的设计安全系数时,抗力不仅不会增大,而是直接为0,这就是用户在查看抗滑桩受力时遇到桩前为0的原因。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730859262502300.png" alt="image.png"/></p><p>(3)其他应用</p><p>&nbsp; &nbsp; &nbsp; &nbsp;除了通过剩余下滑力曲线区分抗滑段与阻滑段,确定滑坡推力之外,还可以通过曲线下降的斜率判断不同区域的抗滑效果,哪些区段采用削方减载效果会更好,抗滑桩设置于哪些地段效率更高。尤其是对于滑坡整治项目,可以充分利用下滑力曲线进行辅助分析。</p>

GEO5某矿渣边坡支护设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 792 次浏览 • 2024-08-22 14:18 • 来自相关话题

1 项目背景       某矿区地下水污染综合防治工程受甲方委托在矿区勘查工作和收集周边工程建设勘查资料的基础上,遵循地质灾害防治的基本原则,对矿区矿渣堆整形、矿渣堆及堆体两侧坡面护坡、拦渣坝、截排水沟、不稳定边坡支护、危岩清除等防治工程从安全有效性、技术可行性、经济合理性进行论证,提出具有针对性、系统性的最优综合防治工程方案。2 工程地质条件       针对矿区矿渣堆边坡开展调勘查,共划分8个不稳定斜坡,分别进行坡面稳定性分析评价,通过钻探取样及现场大重度试验及现场2处已经滑移边坡坡面反演综合确定不稳定斜坡物质组成成分为:       ①素填土(角砾为主):分布于矿区坡面中下部,参数取值天然状态:重度=19.0kN/m3,C=6.0kPa,φ=28.00°,饱和状态:重度=19.6kN/m3,C=0.5kPa,φ=21.00°;       ②素填土(碎石为主):分布于矿区坡面上部,参数取值天然状态:重度=19.2kN/m3,C=2.0kPa,φ=31.00°,饱和状态:重度=19.8kN/m3,C=1.2kPa,φ=27.00°;       ③强风化片岩:分布于矿渣堆下部,厚2-8m,天然单轴抗压强度14MPa,饱和单轴抗压强度10.4MPa;       ④中风化片岩:分布于强风化基岩下,分布于3-10m以下,天然单轴抗压强度32.62MPa,饱和单轴抗压强度16.54MPa;       其岩土体的渗透系数通过钻孔压水试验及现场双环实验确定①层素填土地表矿渣渗透系数值0.14~0.22cm/s,平均值K=0.18cm/s,为强透水性;①层素填土地表覆土渗透系数值2.75×10-5~4.90×10-5cm/s,平均值K=3.83×10-5m/d,为弱透水性;③-1强风化片岩渗透系数值1.29×10-3~7.02×10-3cm/s,平均值K=4.24×10-3cm/s(约72Lu),为中等透水性;③-2中风化渗透系数值2.29~9.38×10-5cm/s,平均值5.44×10-5(约4.6Lu),为弱透水性。       综合调勘查结果及周边1:5000水文地质调查成果,地下水均为大气降雨补给,主要以矿渣堆素填土及坡面表层粉质粘土的孔隙潜水存在,局部受地形切割出露为下降泉径流;下部基岩裂隙水弱含水性,径流较近,因此综合地下水污染防治效果,本次主要采取对矿渣堆整形加封闭矿渣堆减少降雨入渗为主的方法治理。3 斜坡稳定性计算及支护设计       根据不稳定斜坡变形现状,及区内水文地形等特点,分别对不稳定斜坡天然、地震和暴雨工况进行计算。1号不稳定斜坡天然工况计算1号不稳定斜坡地震工况计算1号不稳定斜坡暴雨工况计算       对所有8个不稳定斜坡均进行计算后,所有斜坡均处于基本稳定到欠稳定状态,需要进行支护设计。       本次堆积矿渣高度在5m-15m,且矿渣堆主要为强风化片岩,使用加筋土挡墙工程可以有效利用矿渣,且较为经济。加筋土挡墙可以分级台阶做坡度,在面层开展防渗措施。因此本次支护方案采用加筋土挡墙设计。       考虑到加筋土墙的土工格栅的蠕变、耐久、安装等损失,最终加筋土墙采用双向聚酯(PET)的土工格栅的材料,防腐等级在2-13,它的质控出厂抗拉强度可达400kN/m。加筋土挡墙设计加筋后整体稳定性分析4 总结       本次项目主要是基于地下水污染防治防渗目的开展的边坡整形消纳支挡工程设计,主要基于前期调查,确定污染来源主要为大气降水淋滤矿渣造成的水污染,未发现有深层基岩泉水出露的条件下,开展边坡稳定性分析,在此基础上进行加筋土挡墙设计。       GEO5边坡稳定系分析模块可以一个文件分析多种工况问题,减少重复建模操作,加筋土挡墙设计模块支持多级台阶设置,对本设计方案提供了计算支撑。 查看全部
<p><strong>1 项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;某矿区地下水污染综合防治工程受甲方委托在矿区勘查工作和收集周边工程建设勘查资料的基础上,遵循地质灾害防治的基本原则,对矿区矿渣堆整形、矿渣堆及堆体两侧坡面护坡、拦渣坝、截排水沟、不稳定边坡支护、危岩清除等防治工程从安全有效性、技术可行性、经济合理性进行论证,提出具有针对性、系统性的最优综合防治工程方案。</p><p><strong>2 工程地质条件</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;针对矿区矿渣堆边坡开展调勘查,共划分8个不稳定斜坡,分别进行坡面稳定性分析评价,通过钻探取样及现场大重度试验及现场2处已经滑移边坡坡面反演综合确定不稳定斜坡物质组成成分为:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①素填土(角砾为主):分布于矿区坡面中下部,参数取值天然状态:重度=19.0kN/m3,C=6.0kPa,φ=28.00°,饱和状态:重度=19.6kN/m3,C=0.5kPa,φ=21.00°;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②素填土(碎石为主):分布于矿区坡面上部,参数取值天然状态:重度=19.2kN/m3,C=2.0kPa,φ=31.00°,饱和状态:重度=19.8kN/m3,C=1.2kPa,φ=27.00°;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;③强风化片岩:分布于矿渣堆下部,厚2-8m,天然单轴抗压强度14MPa,饱和单轴抗压强度10.4MPa;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;④中风化片岩:分布于强风化基岩下,分布于3-10m以下,天然单轴抗压强度32.62MPa,饱和单轴抗压强度16.54MPa;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;其岩土体的渗透系数通过钻孔压水试验及现场双环实验确定①层素填土地表矿渣渗透系数值0.14~0.22cm/s,平均值K=0.18cm/s,为强透水性;①层素填土地表覆土渗透系数值2.75×10-5~4.90×10-5cm/s,平均值K=3.83×10-5m/d,为弱透水性;③-1强风化片岩渗透系数值1.29×10-3~7.02×10-3cm/s,平均值K=4.24×10-3cm/s(约72Lu),为中等透水性;③-2中风化渗透系数值2.29~9.38×10-5cm/s,平均值5.44×10-5(约4.6Lu),为弱透水性。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;综合调勘查结果及周边1:5000水文地质调查成果,地下水均为大气降雨补给,主要以矿渣堆素填土及坡面表层粉质粘土的孔隙潜水存在,局部受地形切割出露为下降泉径流;下部基岩裂隙水弱含水性,径流较近,因此综合地下水污染防治效果,本次主要采取对矿渣堆整形加封闭矿渣堆减少降雨入渗为主的方法治理。</p><p><strong>3 斜坡稳定性计算及支护设计</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据不稳定斜坡变形现状,及区内水文地形等特点,分别对不稳定斜坡天然、地震和暴雨工况进行计算。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307340709472.png" alt="image.png"/></p><p style="text-align: center;">1号不稳定斜坡天然工况计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307363530498.png" alt="image.png"/></p><p style="text-align: center;">1号不稳定斜坡地震工况计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307383469712.png" alt="image.png"/></p><p style="text-align: center;">1号不稳定斜坡暴雨工况计算</p><p>&nbsp; &nbsp; &nbsp; &nbsp;对所有8个不稳定斜坡均进行计算后,所有斜坡均处于基本稳定到欠稳定状态,需要进行支护设计。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次堆积矿渣高度在5m-15m,且矿渣堆主要为强风化片岩,使用加筋土挡墙工程可以有效利用矿渣,且较为经济。加筋土挡墙可以分级台阶做坡度,在面层开展防渗措施。因此本次支护方案采用加筋土挡墙设计。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;考虑到加筋土墙的土工格栅的蠕变、耐久、安装等损失,最终加筋土墙采用双向聚酯(PET)的土工格栅的材料,防腐等级在2-13,它的质控出厂抗拉强度可达400kN/m。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307433901610.png" alt="image.png"/></p><p style="text-align: center;">加筋土挡墙设计</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307454719014.png" alt="image.png"/></p><p style="text-align: center;">加筋后整体稳定性分析</p><p><strong>4 总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次项目主要是基于地下水污染防治防渗目的开展的边坡整形消纳支挡工程设计,主要基于前期调查,确定污染来源主要为大气降水淋滤矿渣造成的水污染,未发现有深层基岩泉水出露的条件下,开展边坡稳定性分析,在此基础上进行加筋土挡墙设计。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;GEO5边坡稳定系分析模块可以一个文件分析多种工况问题,减少重复建模操作,加筋土挡墙设计模块支持多级台阶设置,对本设计方案提供了计算支撑。</p>

GEO5某滑雪小镇高陡填土边坡及抗滑桩工程设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 821 次浏览 • 2024-08-22 10:41 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、抗滑桩设计1 项目背景       某滑雪场坐落于“中国滑雪之乡”吉林省通化市,海拔约980米,依山傍水而建的16公里登山步道连接某国家森林公园景区,山体落差约568米。区域年冰雪期逾150天,平均积雪厚度可达一米左右,雪质优良,可同时容纳1000人滑雪。       本次新建滑雪场度假区滑雪小镇位于滑雪场东侧临近的山坡地段,项目整体包括7栋公寓、别墅区、造雪机房和车库等。其中C4座位于项目东南侧山坡,按项目规划,在紧邻C4座东侧需要大量填土,预计新填土及原地表填土合计高度超过15米,而边坡东侧下部临近河道边坡,填土后整体形成了一个大型的高陡边坡,是该项目边坡工程中最危险的部分。项目整体及C4座周边填土边坡情况如下图所示。项目场地周边效果图2 工程地质条件       拟建场区地貌单元为坡积地貌,地势变化较大。孔口高程最大值为454.90m,最小值为416.09m,最大高差38.81m。       勘察深度内,场区地下水属第四系潜水,初见水位埋深自然地面以下1.70~4.40m,稳定水位埋深自然地面以下1.50~4.20m,稳定水位标高为411.89~449.22m,勘察区内地形为山坡,地表水不发育,地下水补给来源主要为大气降雨和雪水融化,降水量比较充沛。山区覆盖层比较薄,有利于降水渗入补给。       由于地势较高,汇水面积小,地形坡度较大,覆盖层不厚,因此地表水径流条件良好,并在短时间内,由沟谷泄走。        地层岩性由上至下分10层,表层土为第四系素填土、粉质粘土含角砾、粗砂、圆砾、卵石,下伏基岩为:老岭群珍珠门组大理岩,根据勘察区岩体露头产状,倾向135°,倾角63°。现分层描述如下:       第①层 素填土:暗黄色、黑色,湿,松散,主要由碎石、粘性土等回填,该层在场区内分布不连续,层厚0.40~3.00m。       第②层 腐殖土:黑色,湿,松散,该层在场区部分地段见到,层厚0.30~1.90m。       第③层 粉质粘土含角砾:暗黄色,湿~饱和,可塑,角砾含量20%左右,该层在场区内部分地段缺失,层厚0.40~3.40m。       第④层 粗砂:暗黄色,湿,稍密,粒径大于0.5mm的颗粒质量超过总质量的50%以上,颗分级配好,分选性差,该层在场区内部分地段见到,层厚0.80~2.10m。       第⑤层 角砾:暗黄色,湿~饱和,稍密,粒径大于2mm的颗粒质量占总质量的50%以上,呈棱角状,一般粒径2~5mm,最大粒径10mm,由粘性土充填,该层在场区内分布不连续,层厚1.60~2.70m。       第⑥层 碎石:暗黄色,湿,稍密,粒径大于20mm的颗粒质量占总质量的50%以上,呈棱角状,一般粒径20~50mm,最大粒径70mm,由粘性土充填,该层在场区内部分地段见到,层厚0.50~3.10m。       第⑦层 卵石:暗黄色,湿~饱和,稍密,粒径大于20mm的颗粒占总质量的50%以上,呈亚圆状,一般粒径20~60mm,最大粒径120mm,由砂类土充填,该层在场区内分布不连续,层厚0.30~4.60m。       第⑧层 大理岩:全风化,灰白色,经风化作用,结构被破坏,见原岩成份,该层在场区内分布不连续,层厚0.40~0.90m。       第⑨层 大理岩:强风化,灰白色,隐晶质变晶结构,块状构造,为较软岩,较破碎,岩芯呈碎块状,岩体基本质量等级为Ⅳ级,层厚0.20~2.10m。       第⑩层 大理岩:中风化,灰白色,隐晶质变晶结构,块状构造,为较软岩,较完整,岩芯呈短柱状及块状,岩体基本质量等级为Ⅳ级,层厚5.00~20.40m。场地7-7工程地质剖面图3 支挡结构设计3.1设计参数       (1)X1-X2-X3-X4剖面:采用直径1200mm抗滑桩,间距2.4m,桩长18m, 桩端进入中风化大理岩不小于4m,兼做上部悬臂式挡土墙的桩基础,悬臂式挡土墙高3m;       (2)Y1-Y2-Y3-Y4-Y5剖面:采用直径1400mm抗滑桩,间距2.4m,桩长11m, 桩端进入中风化大理岩不小于4m,兼做上部扶壁式挡土墙的桩基础,扶壁式挡土墙高5m;       (3)支护桩及悬臂式、扶壁式挡土墙采用C30混凝土,主筋采用HRB400级钢筋,箍筋可采用HPB335级钢筋;主筋外侧混凝土保护层厚度50mm;       (4)锚索采用3-7∅5(∅=15.2)钢绞线为筋体,成孔直径不小于150mm,注浆材料为素水泥浆,水灰比0.8:1,水泥采用42.5级普通硅酸盐水泥,应按规范要求保证锚索施工质量;       (5)锚索承载力标准值Nk=150kPa,预拉力为Nk的140%,持荷5分钟后锁定,锁定力为Nk的85%;       (6)填土要求:上部填土必须分层夯实,分层厚度不大于400mm,压实系数不小于0.95,并严格按照图中尺寸进行填筑,严禁超挖超填;回填材料为砂类土或黏土混以碎石,严禁使用软黏土、膨胀性土、淤泥质土、耕植土或冻土作为回填土;       (7)上部挡墙后地面横坡坡度大于1:6时,应在进行地面粗糙后再填土;       (8)锚索及锚头的防腐处应符合《建筑边坡工程技术规范》GB50330-2013永久性锚杆的防腐蚀处理的规定。典型设计剖面3.2计算分析成果(1)天然工况计算(2)地震工况计算4 总结       本项目整体建于山体边坡上,涉及各种边坡形式较多,也采取了不同的支护手段,采用库仑GEO5岩土分析软件,可以实现多工况在一个文件当中进行计算,方便快捷,计算成果为设计提供了支撑。       项目于2021年初进行设计,并陆续施工,至2022年完工,当时正处于新冠疫情期间,未能采集到施工过程的影像,后期据业主反映建成后效果很好,且与度假区整体的景观规划较协调。 查看全部
<p>使用模块:GEO5土质边坡稳定性分析、抗滑桩设计</p><p><strong>1 项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;某滑雪场坐落于“中国滑雪之乡”吉林省通化市,海拔约980米,依山傍水而建的16公里登山步道连接某国家森林公园景区,山体落差约568米。区域年冰雪期逾150天,平均积雪厚度可达一米左右,雪质优良,可同时容纳1000人滑雪。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次新建滑雪场度假区滑雪小镇位于滑雪场东侧临近的山坡地段,项目整体包括7栋公寓、别墅区、造雪机房和车库等。其中C4座位于项目东南侧山坡,按项目规划,在紧邻C4座东侧需要大量填土,预计新填土及原地表填土合计高度超过15米,而边坡东侧下部临近河道边坡,填土后整体形成了一个大型的高陡边坡,是该项目边坡工程中最危险的部分。项目整体及C4座周边填土边坡情况如下图所示。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294173959878.png" alt="image.png"/></p><p style="text-align: center;">项目场地周边效果图</p><p><strong>2 工程地质条件</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;拟建场区地貌单元为坡积地貌,地势变化较大。孔口高程最大值为454.90m,最小值为416.09m,最大高差38.81m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;勘察深度内,场区地下水属第四系潜水,初见水位埋深自然地面以下1.70~4.40m,稳定水位埋深自然地面以下1.50~4.20m,稳定水位标高为411.89~449.22m,勘察区内地形为山坡,地表水不发育,地下水补给来源主要为大气降雨和雪水融化,降水量比较充沛。山区覆盖层比较薄,有利于降水渗入补给。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;由于地势较高,汇水面积小,地形坡度较大,覆盖层不厚,因此地表水径流条件良好,并在短时间内,由沟谷泄走。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 地层岩性由上至下分10层,表层土为第四系素填土、粉质粘土含角砾、粗砂、圆砾、卵石,下伏基岩为:老岭群珍珠门组大理岩,根据勘察区岩体露头产状,倾向135°,倾角63°。现分层描述如下:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第①层 素填土:暗黄色、黑色,湿,松散,主要由碎石、粘性土等回填,该层在场区内分布不连续,层厚0.40~3.00m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第②层 腐殖土:黑色,湿,松散,该层在场区部分地段见到,层厚0.30~1.90m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第③层 粉质粘土含角砾:暗黄色,湿~饱和,可塑,角砾含量20%左右,该层在场区内部分地段缺失,层厚0.40~3.40m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第④层 粗砂:暗黄色,湿,稍密,粒径大于0.5mm的颗粒质量超过总质量的50%以上,颗分级配好,分选性差,该层在场区内部分地段见到,层厚0.80~2.10m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑤层 角砾:暗黄色,湿~饱和,稍密,粒径大于2mm的颗粒质量占总质量的50%以上,呈棱角状,一般粒径2~5mm,最大粒径10mm,由粘性土充填,该层在场区内分布不连续,层厚1.60~2.70m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑥层 碎石:暗黄色,湿,稍密,粒径大于20mm的颗粒质量占总质量的50%以上,呈棱角状,一般粒径20~50mm,最大粒径70mm,由粘性土充填,该层在场区内部分地段见到,层厚0.50~3.10m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑦层 卵石:暗黄色,湿~饱和,稍密,粒径大于20mm的颗粒占总质量的50%以上,呈亚圆状,一般粒径20~60mm,最大粒径120mm,由砂类土充填,该层在场区内分布不连续,层厚0.30~4.60m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑧层 大理岩:全风化,灰白色,经风化作用,结构被破坏,见原岩成份,该层在场区内分布不连续,层厚0.40~0.90m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑨层 大理岩:强风化,灰白色,隐晶质变晶结构,块状构造,为较软岩,较破碎,岩芯呈碎块状,岩体基本质量等级为Ⅳ级,层厚0.20~2.10m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑩层 大理岩:中风化,灰白色,隐晶质变晶结构,块状构造,为较软岩,较完整,岩芯呈短柱状及块状,岩体基本质量等级为Ⅳ级,层厚5.00~20.40m。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294258606780.png" alt="image.png"/></p><p style="text-align: center;">场地7-7工程地质剖面图</p><p><strong>3 支挡结构设计</strong></p><p>3.1设计参数</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(1)X1-X2-X3-X4剖面:采用直径1200mm抗滑桩,间距2.4m,桩长18m, 桩端进入中风化大理岩不小于4m,兼做上部悬臂式挡土墙的桩基础,悬臂式挡土墙高3m;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(2)Y1-Y2-Y3-Y4-Y5剖面:采用直径1400mm抗滑桩,间距2.4m,桩长11m, 桩端进入中风化大理岩不小于4m,兼做上部扶壁式挡土墙的桩基础,扶壁式挡土墙高5m;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(3)支护桩及悬臂式、扶壁式挡土墙采用C30混凝土,主筋采用HRB400级钢筋,箍筋可采用HPB335级钢筋;主筋外侧混凝土保护层厚度50mm;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(4)锚索采用3-7∅5(∅=15.2)钢绞线为筋体,成孔直径不小于150mm,注浆材料为素水泥浆,水灰比0.8:1,水泥采用42.5级普通硅酸盐水泥,应按规范要求保证锚索施工质量;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(5)锚索承载力标准值Nk=150kPa,预拉力为Nk的140%,持荷5分钟后锁定,锁定力为Nk的85%;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(6)填土要求:上部填土必须分层夯实,分层厚度不大于400mm,压实系数不小于0.95,并严格按照图中尺寸进行填筑,严禁超挖超填;回填材料为砂类土或黏土混以碎石,严禁使用软黏土、膨胀性土、淤泥质土、耕植土或冻土作为回填土;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(7)上部挡墙后地面横坡坡度大于1:6时,应在进行地面粗糙后再填土;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(8)锚索及锚头的防腐处应符合《建筑边坡工程技术规范》GB50330-2013永久性锚杆的防腐蚀处理的规定。</p><p style="text-align: center;"><strong><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294336596049.png" alt="image.png"/></strong></p><p style="text-align: center;">典型设计剖面</p><p>3.2计算分析成果</p><p>(1)天然工况计算</p><p style="text-align: center;"><strong><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294366973070.png" alt="image.png"/></strong><br/></p><p style="text-align: center;"><strong><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294379804812.png" alt="image.png"/></strong></p><p>(2)地震工况计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294399993421.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294414892184.png" alt="image.png"/></p><p><strong>4 总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本项目整体建于山体边坡上,涉及各种边坡形式较多,也采取了不同的支护手段,采用库仑GEO5岩土分析软件,可以实现多工况在一个文件当中进行计算,方便快捷,计算成果为设计提供了支撑。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;项目于2021年初进行设计,并陆续施工,至2022年完工,当时正处于新冠疫情期间,未能采集到施工过程的影像,后期据业主反映建成后效果很好,且与度假区整体的景观规划较协调。</p>

GEO5某水库管理营地边坡支护结构设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 758 次浏览 • 2024-08-22 10:34 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、抗滑桩设计、扶壁式挡土墙设计、重力式挡土墙设计1 项目背景       某水库位于金沙江左岸某二级支流中上游。水库为III等中型工程,工程任务为农业灌溉,城乡供水等综合利用。水库正常蓄水位1971.0m,设计洪水位1971.02m,校核洪水位1971.48m。水库总库容5113万m3,兴利库容4446万m3。工程由水库枢纽和灌区工程两部分组成,其中:水库枢纽包括大坝(粘土心墙石渣坝)、溢洪道、放空(导流)隧洞、取水隧洞等;灌区工程包括1条干渠和4条支渠。       工程场地库坝区未来50年超越概率10%的基岩水平峰值加速度为0.121g,相应地震烈度为Ⅶ度。       根据《水利水电工程合理使用年限及耐久性设计规范》(SL654-2014)表 3.0.2确定,对综合利用的水利水电工程,工程合理使用年限应按其中最高年限确定。该水库工程等别为Ⅲ等,工程规模为中型,确定工程合理使用年限为50年。       水库配套管理营地工程区位于右岸,场地现状为斜坡地段。场地地面高程为 1993m~2017m,最大高程为 22m,自然边坡坡度为 15°~20°,局部较陡, 最大约 30°。因处于斜坡地带,需对营地周边边坡进行支护结构设计。管理营地区域位置2 工程地质条件       根据工程地质测绘及勘探揭示,场地覆盖层主要为第四系残坡积形成的(Q4el+dl) 含孤块碎石土、含碎砾石粉质黏土,下伏基岩为白垩系下统粉砂质泥岩,各岩土层地质特征自上而下描述如下:(1)第四系残坡积层(Q4el+dl)       ①1 含孤块碎石土:紫红色,主要为孤块石, 原岩为粉砂质泥岩,呈碎块-柱状,碎块大小 2-6cm,柱长 5cm-25cm,含量 60%-70%,中间夹少量粉质黏土。厚度 4.6m~6.5m。       ①2 含碎砾石粉质黏土: 褐色,稍湿~干燥,松散~稍密,可塑状,碎石呈棱角-次棱角状,大小1-5cm,含量约 20%~30%,原岩为粉砂质泥岩。厚度 1.5m~7m。(2) 白垩系下统基岩       ②粉砂质泥岩:紫红色、青灰色,湿,成分以粘土矿物为主,泥质结构,薄层~中厚层状构造。       按其风化程度的不同,粉砂质泥岩可分为以下三个亚层:       ②1 强风化粉砂质泥岩: 强卸荷,岩体强烈卸荷松弛,普遍夹泥, 裂隙发育,遇水易崩解,性软,岩芯呈散体状结构,碎块大小 3cm~30cm。 厚度 1.5m~12m。       ②2 中风化粉砂质泥岩:岩体结构部分破坏,层理较为清晰,性脆,断口不平整,岩芯呈短柱状及柱状,较完整。 厚度 3.2m ~12m。       ②3 微新风化粉砂质泥岩:岩体结构基本未变,仅节理面有少量锈染,有少量风化裂隙,岩芯呈柱状及长柱状,较完整,本次未揭穿。场地岩土体物理力学参数建议值3 边坡支挡结构设计       营地后边坡采用抗滑桩结合逆作法锚拉式重力挡墙工艺,营地前缘边坡采用扶壁式挡墙填方施工,边坡开挖施工应严格按照从上至下刷坡,严禁未刷坡擅自开挖坡脚,采用动态信息化施工方法,做好施工期监测保证施工期安全。3.1边坡安全等级       边坡、挡土墙结构设计工作年限为50年;1#抗滑桩结合挡墙支护的边坡安全等级为以及一级,结构重要性系数为1.1,2#挡墙边坡安全等级为二级,结构重要性系数为1.0,3#挡墙边坡安全等级为一级,结构重要性系数为1.1。       持久工况挡墙抗滑移稳定系数为1.3,抗倾覆稳定系数为1.6;地震工况挡墙抗滑移稳定系数为1.1,抗倾覆稳定系数为1.3。       根据《建筑边坡工程技术规范》(GB50330~2013)要求,营地后边坡安全等级取一级,一般工况边坡稳定安全系数取1.35,地震工况取1.15。营地前缘填方边坡安全等级取二级,一般工况边坡稳定安全系数取1.30,地震工况取1.10。3.2典型断面设计3.3计算分析成果(1)抗滑桩支挡边坡设计(2)重力式挡墙支护设计(3)扶壁式挡墙支挡结构设计4 总结       本项目属于斜坡场地周边边坡支护设计,根据不同位置地质条件及斜坡高度,采取了不同的支护措施。       利用南京库仑GEO5岩土分析软件,可以快速建立多种挡墙类型及抗滑桩支挡结构,便于方案对比分析,多模块可以联合使用,省去重复建模时间,提高了项目设计效率。 查看全部
<p>使用模块:GEO5土质边坡稳定性分析、抗滑桩设计、扶壁式挡土墙设计、重力式挡土墙设计</p><p><strong>1 项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;某水库位于金沙江左岸某二级支流中上游。水库为III等中型工程,工程任务为农业灌溉,城乡供水等综合利用。水库正常蓄水位1971.0m,设计洪水位1971.02m,校核洪水位1971.48m。水库总库容5113万m3,兴利库容4446万m3。工程由水库枢纽和灌区工程两部分组成,其中:水库枢纽包括大坝(粘土心墙石渣坝)、溢洪道、放空(导流)隧洞、取水隧洞等;灌区工程包括1条干渠和4条支渠。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;工程场地库坝区未来50年超越概率10%的基岩水平峰值加速度为0.121g,相应地震烈度为Ⅶ度。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据《水利水电工程合理使用年限及耐久性设计规范》(SL654-2014)表 3.0.2确定,对综合利用的水利水电工程,工程合理使用年限应按其中最高年限确定。该水库工程等别为Ⅲ等,工程规模为中型,确定工程合理使用年限为50年。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;水库配套管理营地工程区位于右岸,场地现状为斜坡地段。场地地面高程为 1993m~2017m,最大高程为 22m,自然边坡坡度为 15°~20°,局部较陡, 最大约 30°。因处于斜坡地带,需对营地周边边坡进行支护结构设计。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293414348507.png" alt="image.png"/></p><p style="text-align: center;">管理营地区域位置</p><p><strong>2 工程地质条件</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据工程地质测绘及勘探揭示,场地覆盖层主要为第四系残坡积形成的(Q<sub>4</sub><sup>el+dl</sup>) 含孤块碎石土、含碎砾石粉质黏土,下伏基岩为白垩系下统粉砂质泥岩,各岩土层地质特征自上而下描述如下:</p><p>(1)第四系残坡积层(Q<sub>4</sub><sup>el+dl</sup>)</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①<sub>1</sub> 含孤块碎石土:紫红色,主要为孤块石, 原岩为粉砂质泥岩,呈碎块-柱状,碎块大小 2-6cm,柱长 5cm-25cm,含量 60%-70%,中间夹少量粉质黏土。厚度 4.6m~6.5m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①<sub>2</sub> 含碎砾石粉质黏土: 褐色,稍湿~干燥,松散~稍密,可塑状,碎石呈棱角-次棱角状,大小1-5cm,含量约 20%~30%,原岩为粉砂质泥岩。厚度 1.5m~7m。</p><p>(2) 白垩系下统基岩</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②粉砂质泥岩:紫红色、青灰色,湿,成分以粘土矿物为主,泥质结构,薄层~中厚层状构造。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;按其风化程度的不同,粉砂质泥岩可分为以下三个亚层:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②<sub>1</sub> 强风化粉砂质泥岩: 强卸荷,岩体强烈卸荷松弛,普遍夹泥, 裂隙发育,遇水易崩解,性软,岩芯呈散体状结构,碎块大小 3cm~30cm。 厚度 1.5m~12m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②<sub>2</sub> 中风化粉砂质泥岩:岩体结构部分破坏,层理较为清晰,性脆,断口不平整,岩芯呈短柱状及柱状,较完整。 厚度 3.2m ~12m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②<sub>3</sub> 微新风化粉砂质泥岩:岩体结构基本未变,仅节理面有少量锈染,有少量风化裂隙,岩芯呈柱状及长柱状,较完整,本次未揭穿。</p><p style="text-align: center;">场地岩土体物理力学参数建议值</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293556747125.png" alt="image.png"/></p><p><strong>3 边坡支挡结构设计</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;营地后边坡采用抗滑桩结合逆作法锚拉式重力挡墙工艺,营地前缘边坡采用扶壁式挡墙填方施工,边坡开挖施工应严格按照从上至下刷坡,严禁未刷坡擅自开挖坡脚,采用动态信息化施工方法,做好施工期监测保证施工期安全。</p><p>3.1边坡安全等级</p><p>&nbsp; &nbsp; &nbsp; &nbsp;边坡、挡土墙结构设计工作年限为50年;1#抗滑桩结合挡墙支护的边坡安全等级为以及一级,结构重要性系数为1.1,2#挡墙边坡安全等级为二级,结构重要性系数为1.0,3#挡墙边坡安全等级为一级,结构重要性系数为1.1。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;持久工况挡墙抗滑移稳定系数为1.3,抗倾覆稳定系数为1.6;地震工况挡墙抗滑移稳定系数为1.1,抗倾覆稳定系数为1.3。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据《建筑边坡工程技术规范》(GB50330~2013)要求,营地后边坡安全等级取一级,一般工况边坡稳定安全系数取1.35,地震工况取1.15。营地前缘填方边坡安全等级取二级,一般工况边坡稳定安全系数取1.30,地震工况取1.10。</p><p>3.2典型断面设计</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293613580210.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293632403706.png" alt="image.png"/></p><p>3.3计算分析成果</p><p>(1)抗滑桩支挡边坡设计</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293654568646.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293672289728.png" alt="image.png"/></p><p>(2)重力式挡墙支护设计</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293692857938.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293705178783.png" alt="image.png"/></p><p>(3)扶壁式挡墙支挡结构设计</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293723622989.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293733596600.png" alt="image.png"/></p><p>4<strong> 总结</strong></p><p><strong>&nbsp; &nbsp; &nbsp; &nbsp;</strong>本项目属于斜坡场地周边边坡支护设计,根据不同位置地质条件及斜坡高度,采取了不同的支护措施。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;利用南京库仑GEO5岩土分析软件,可以快速建立多种挡墙类型及抗滑桩支挡结构,便于方案对比分析,多模块可以联合使用,省去重复建模时间,提高了项目设计效率。</p>

GEO5某省道应急抢险修复工程设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 966 次浏览 • 2024-08-22 10:13 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、微型桩设计一、项目背景       某省道K160+800~K160+845段为直线填方路基段,外侧路肩墙高3.0~4.0m高,路面标高660.58~662.84m左右,纵面较平缓,道路外侧坡体为自然状态的单斜坡地形,横坡总体较缓。       今年5月中旬因遭受连续强降雨,地表水陡增,雨水渗入填土与原生黏性土面(粉质黏土属相对隔水层),导致上部填土层含水量增大,逐渐饱水软化,抗剪强度减小,容重增加等综合作用下产生路基沉降约20cm、路面开裂形成纵向裂缝,裂缝宽约5~10cm,路肩墙向外推移变形,严重影响交通。安全隐患影响较大。该道路为境内主干道,涉及数万人员出行及各种物资运输,影响重大,综合以上因素,该段路基水毁急需抢险治理。道路现场照片二、滑坡体特征       根据本次工程地质测绘、钻探揭露及收集的已有资料,滑坡滑体物质主要由粉质粘土夹块碎石、素填土组成,厚度2.0~6.0m,黄褐色、棕褐色,块石含量不均,一般10~30%,粒径一般 0.10~0.50m,粘土呈软塑~可塑状,透水性较差。       滑带土位于土层内部,埋深3.1m;滑带土主要为粘土,黄褐色,软塑状,含约10%的角砾、碎石,角砾粒径一般5~20mm,角砾呈次棱角状,无定向排列,滑带土受挤压、搓揉明显。       滑床物质为坡洪积(Q4dl+pl)黄褐色粉质粘土,粉质粘土呈可塑~硬塑状,滑床形态纵向上呈折线型,与地表形态相近。       滑体中地下水主要为松散岩类孔隙水,其地下水主要为大气降雨补给,具就地补给就近排泄,径流距离较短的特点。因滑坡体位于斜坡地段,地下水赋存条件差,排泄条件好,勘察期间对施工钻孔进行的水文地质观测及抽水试验成果,滑坡路段地下水较贫乏。滑带土取芯照片       该段上部为原道路修建时堆积填土,厚度约1~5.5m,下部为可塑~硬塑状粉质黏土,黄褐色,含少量碎石角砾,厚度约2.0~30.0m,下伏基岩为二叠系中统龙潭、大隆并组的页岩、灰岩,岩体较破碎,附近较远处基岩测得实际产状,倾向为328°,倾角12°;斜坡主要为填土、粉质黏土,以荒地、林地相间,局部旱地。植被总体较发育。近10年岸坡总体较稳定,未有大范围岸坡滑移现象,以局部下沉变形迹象为主。三、滑坡稳定性分析(1)定性分析       滑坡的形成,是由其地形地貌、地层岩性、水及人类工程活动的共同作用的结果:厚度较大的第四系坡洪积土的存在,为滑坡的形成提供了物质基础。据已有钻探资料揭示,在滑坡区域内,坡洪积土厚一般4.0~30.0m,为滑坡层产生不同程度的变形;水的作用,是滑坡形成的激发因素,区域内降雨量大并集中,多为大、暴雨,雨水的下渗,不但降低土体的抗剪强度,还提高滑体重量,产生动水压力等,为滑坡产生变形提了有利条件。       滑坡所的形成提供丰富的物质来源;软弱结构面的存在为滑坡的形成提供了良好的地质环境,便于形成滑动面,由于土体本身强度的降低,形成软弱结构面,这样接触面倾角适宜的条件下,使土体产生足够的下滑分力;滑坡体位处斜坡地段,地面坡角与滑面坡度基本一致,坡度角一般为10~22°,地形坡度条件为滑坡形成与位移提供了临空面,大气降水对滑体进行冲刷、侵蚀、饱和软化,使滑坡堆积处位置地形坡角较大,滑坡临空条件较好,为滑坡的形成及发生创造了有利的工程地质条件。汛期雨水较多,滑坡持续受大雨、暴雨影响,造成滑体物质力学性质降低,导致坡体中前部局部出现滑移、外挤迹象。若遇暴雨或持续降雨影响,该滑坡有可能在坡体中部、后部出现滑移破坏,并且有可能进一步加剧变形,发展为滑体发生整体下滑。目前该滑坡处于欠稳定状态。(2)滑动面参数确定       滑坡滑面参数的综合确定:综合考虑滑坡体性质(成分及覆盖层厚度)、滑面的工程物理特性、同类工程经验类比、反演分析成果及相关规范,确定本滑坡滑动面的抗剪设计参数为:C=14.2kPa(12.5 kPa),Φ=9.0°(8.5°)。滑坡设计计算参数见下表:(3)定量计算       本次稳定性计算采用GEO5软件。工况分为工况一、自重(天然状态),工况二、自重+暴雨(饱和状态)。安全系数根据《公路路基设计规范》(JGT D30-2015)第7.2.2条第1款有关规定,计算时安全系数分别为:       工况一、自重(天然状态)下,安全系数取1.25;       工况二、自重+暴雨(饱和状态)下,安全系数取1.15。       稳定性计算考虑2种工况:一、自重+天然状态;二、自重+饱水状态;对现有滑坡稳定性进行计算,计算方法采用折线法(不平衡推力法隐式),结算结果汇总如下:四、滑坡治理设计       在本设计中,首先对治理方案的技术合理性、施工的可行性和经济三个方面综合考虑。同时,着重考虑施工安全、工期的因素,从而选择最快捷的治理方案。结合本道路的特殊性及实际情况,对该滑坡进行综合治理。尽早完成道路施工为基本,其次为持久型治理设计,其目的在于确保以后该道路在长期运行的安全,同时消除滑坡对道路的安全隐患。两部分相辅相成,共同作用达到缩短工期、节约成本的目的。       综合考虑现场地形、地质及环境条件,其设计治理方案为:对既有滑坡体采用道路中线附近钢管桩注浆加固+外侧钢管桩地梁+挡墙恢复路基+道路中线内侧钻孔注浆加固+仰斜式排水孔+综合截排水措施,其它为路面恢复、综合交安。       本次设计方案验算是基于勘察成果所提供的岩土参数进行支挡后的稳定性计算,计算考虑2种工况:一、支挡+自重+天然状态;二、支挡+自重+饱水状态,计算方法采用折线法(不平衡推力法隐式),结算结果汇总如下:五、总结       本项目属于道路应急抢险修复工程。现场发现异常情况后,通过勘察了解场地地质构造及滑带土性质,从定性和定量角度分析了道路边坡的稳定性,从应急抢险角度出发,制定了钢管桩加挡墙的联合支挡形式。       本项目利用GEO5软件进行分析和验算,在场地评价和支护结构设计方面都起到了技术支撑作用,为设计方案提供了依据,最终方案已指导现场顺利施工。现场施工照片 查看全部
<p>使用模块:GEO5土质边坡稳定性分析、微型桩设计</p><p><strong>一、项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;某省道K160+800~K160+845段为直线填方路基段,外侧路肩墙高3.0~4.0m高,路面标高660.58~662.84m左右,纵面较平缓,道路外侧坡体为自然状态的单斜坡地形,横坡总体较缓。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;今年5月中旬因遭受连续强降雨,地表水陡增,雨水渗入填土与原生黏性土面(粉质黏土属相对隔水层),导致上部填土层含水量增大,逐渐饱水软化,抗剪强度减小,容重增加等综合作用下产生路基沉降约20cm、路面开裂形成纵向裂缝,裂缝宽约5~10cm,路肩墙向外推移变形,严重影响交通。安全隐患影响较大。该道路为境内主干道,涉及数万人员出行及各种物资运输,影响重大,综合以上因素,该段路基水毁急需抢险治理。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292423186125.png" alt="image.png"/></p><p style="text-align: center;">道路现场照片</p><p><strong>二、滑坡体特征</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据本次工程地质测绘、钻探揭露及收集的已有资料,滑坡滑体物质主要由粉质粘土夹块碎石、素填土组成,厚度2.0~6.0m,黄褐色、棕褐色,块石含量不均,一般10~30%,粒径一般 0.10~0.50m,粘土呈软塑~可塑状,透水性较差。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑带土位于土层内部,埋深3.1m;滑带土主要为粘土,黄褐色,软塑状,含约10%的角砾、碎石,角砾粒径一般5~20mm,角砾呈次棱角状,无定向排列,滑带土受挤压、搓揉明显。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑床物质为坡洪积(Q<sub>4</sub><sup>dl+pl</sup>)黄褐色粉质粘土,粉质粘土呈可塑~硬塑状,滑床形态纵向上呈折线型,与地表形态相近。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑体中地下水主要为松散岩类孔隙水,其地下水主要为大气降雨补给,具就地补给就近排泄,径流距离较短的特点。因滑坡体位于斜坡地段,地下水赋存条件差,排泄条件好,勘察期间对施工钻孔进行的水文地质观测及抽水试验成果,滑坡路段地下水较贫乏。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292469304981.png" alt="image.png"/></p><p style="text-align: center;">滑带土取芯照片</p><p>&nbsp; &nbsp; &nbsp; &nbsp;该段上部为原道路修建时堆积填土,厚度约1~5.5m,下部为可塑~硬塑状粉质黏土,黄褐色,含少量碎石角砾,厚度约2.0~30.0m,下伏基岩为二叠系中统龙潭、大隆并组的页岩、灰岩,岩体较破碎,附近较远处基岩测得实际产状,倾向为328°,倾角12°;斜坡主要为填土、粉质黏土,以荒地、林地相间,局部旱地。植被总体较发育。近10年岸坡总体较稳定,未有大范围岸坡滑移现象,以局部下沉变形迹象为主。</p><p><strong>三、滑坡稳定性分析</strong></p><p><strong>(1)定性分析</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑坡的形成,是由其地形地貌、地层岩性、水及人类工程活动的共同作用的结果:厚度较大的第四系坡洪积土的存在,为滑坡的形成提供了物质基础。据已有钻探资料揭示,在滑坡区域内,坡洪积土厚一般4.0~30.0m,为滑坡层产生不同程度的变形;水的作用,是滑坡形成的激发因素,区域内降雨量大并集中,多为大、暴雨,雨水的下渗,不但降低土体的抗剪强度,还提高滑体重量,产生动水压力等,为滑坡产生变形提了有利条件。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑坡所的形成提供丰富的物质来源;软弱结构面的存在为滑坡的形成提供了良好的地质环境,便于形成滑动面,由于土体本身强度的降低,形成软弱结构面,这样接触面倾角适宜的条件下,使土体产生足够的下滑分力;滑坡体位处斜坡地段,地面坡角与滑面坡度基本一致,坡度角一般为10~22°,地形坡度条件为滑坡形成与位移提供了临空面,大气降水对滑体进行冲刷、侵蚀、饱和软化,使滑坡堆积处位置地形坡角较大,滑坡临空条件较好,为滑坡的形成及发生创造了有利的工程地质条件。汛期雨水较多,滑坡持续受大雨、暴雨影响,造成滑体物质力学性质降低,导致坡体中前部局部出现滑移、外挤迹象。若遇暴雨或持续降雨影响,该滑坡有可能在坡体中部、后部出现滑移破坏,并且有可能进一步加剧变形,发展为滑体发生整体下滑。目前该滑坡处于欠稳定状态。</p><p><strong>(2)滑动面参数确定</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑坡滑面参数的综合确定:综合考虑滑坡体性质(成分及覆盖层厚度)、滑面的工程物理特性、同类工程经验类比、反演分析成果及相关规范,确定本滑坡滑动面的抗剪设计参数为:C=14.2kPa(12.5 kPa),Φ=9.0°(8.5°)。</p><p>滑坡设计计算参数见下表:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292524569019.png" alt="image.png"/></p><p><strong>(3)定量计算</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次稳定性计算采用GEO5软件。工况分为工况一、自重(天然状态),工况二、自重+暴雨(饱和状态)。安全系数根据《公路路基设计规范》(JGT D30-2015)第7.2.2条第1款有关规定,计算时安全系数分别为:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;工况一、自重(天然状态)下,安全系数取1.25;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;工况二、自重+暴雨(饱和状态)下,安全系数取1.15。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;稳定性计算考虑2种工况:一、自重+天然状态;二、自重+饱水状态;对现有滑坡稳定性进行计算,计算方法采用折线法(不平衡推力法隐式),结算结果汇总如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292571359212.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292593417922.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292606879846.png" alt="image.png"/></p><p><strong>四、滑坡治理设计</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;在本设计中,首先对治理方案的技术合理性、施工的可行性和经济三个方面综合考虑。同时,着重考虑施工安全、工期的因素,从而选择最快捷的治理方案。结合本道路的特殊性及实际情况,对该滑坡进行综合治理。尽早完成道路施工为基本,其次为持久型治理设计,其目的在于确保以后该道路在长期运行的安全,同时消除滑坡对道路的安全隐患。两部分相辅相成,共同作用达到缩短工期、节约成本的目的。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;综合考虑现场地形、地质及环境条件,其设计治理方案为:对既有滑坡体采用道路中线附近钢管桩注浆加固+外侧钢管桩地梁+挡墙恢复路基+道路中线内侧钻孔注浆加固+仰斜式排水孔+综合截排水措施,其它为路面恢复、综合交安。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次设计方案验算是基于勘察成果所提供的岩土参数进行支挡后的稳定性计算,计算考虑2种工况:一、支挡+自重+天然状态;二、支挡+自重+饱水状态,计算方法采用折线法(不平衡推力法隐式),结算结果汇总如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292640257868.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292653711604.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292693961253.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292706726594.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292722894560.png" alt="image.png"/></p><p><strong>五、总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本项目属于道路应急抢险修复工程。现场发现异常情况后,通过勘察了解场地地质构造及滑带土性质,从定性和定量角度分析了道路边坡的稳定性,从应急抢险角度出发,制定了钢管桩加挡墙的联合支挡形式。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本项目利用GEO5软件进行分析和验算,在场地评价和支护结构设计方面都起到了技术支撑作用,为设计方案提供了依据,最终方案已指导现场顺利施工。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292745367036.png" alt="image.png"/></p><p style="text-align: center;">现场施工照片</p>

关于锚索预应力的问题

岩土工程库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 1233 次浏览 • 2024-06-25 16:30 • 来自相关话题

geo5边坡毕肖普法表格在哪下载

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 1396 次浏览 • 2024-05-07 11:12 • 来自相关话题

土质边坡稳定计算,挡土墙作为刚性材料,能按第2工况输入吗?

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 1095 次浏览 • 2024-05-07 11:08 • 来自相关话题

用边坡开挖状态的最大剩余下滑力对应的滑面做锚索支护设计可以吗?

岩土工程tangyuxi 回答了问题 • 2 人关注 • 3 个回答 • 3773 次浏览 • 2024-05-07 11:05 • 来自相关话题

GEO5计算双坡治理,能一个模型计算吗?

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 989 次浏览 • 2024-04-02 09:52 • 来自相关话题

全埋式抗滑桩如何设置

库仑产品杨帆 回答了问题 • 3 人关注 • 2 个回答 • 974 次浏览 • 2024-01-12 10:19 • 来自相关话题

GEO5拟静力法分析爆破工况

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 1200 次浏览 • 2024-01-09 14:29 • 来自相关话题

       近期有多位工程师咨询在GEO5当中如何模拟爆破工况,如果是采用拟静力法考虑爆破振动力,可以通过GEO5地震荷载中自定义水平地震系数的方法实现,本文将简述分析过程。1. 计算原理       根据《非煤露天矿边坡工程技术规范》(GB 51016-2014)附录D.2的说明,边坡稳定计算时,考虑爆破振动力,各条快的水平爆破力按下列公式计算式中:Fi’—第i条块爆破振动力的水平向等效静力(kN);Wi—第i条块的重量;βi—第i条块爆破力系数,可取0.1~0.3;ai—第i条块爆破振动质点水平向最大加速度(m/s2);g—重力加速度(m/s2);f—振动爆破频率(Hz);Vi—第i条块重心处质点向振动速度(cm/s);Q—爆破装药量,分段延时爆破时取最大一段的装药量(kg);Ri—爆破区药量分布的几何中心至观测点的距离;K、α—与采场地质条件、岩体性质、爆破条件等有关的系数,由振动检测和测试数据获取。2. 案例分析       某砂岩矿边坡坡高55m,根据初步设计,矿山采用分段逐孔起爆,最大一段(单孔)用药量为56.3kg,按《爆破安全规程》(GB6722-2014)取振动爆破频率为20Hz。爆破区药量分布的几何中心至观测点的综合距离取值为90m。参考《爆破安全规程》13.2.4参数建议值说明,K取150,α取1.5。爆破区不同岩性的K,α取值建议根据以上参数,另外βi取0.12,计算得到       打开GEO5土坡模块,建好模型后,将0.02直接输入到地震分析当中进行计算。       以上即为GEO5当中模拟爆破工况分析的方法,文中提到的两本规范电子版可点击下载:GB 51016-2014 非煤露天矿边坡工程技术规范.pdf爆破安全规程GB6722-2014.pdf 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp;近期有多位工程师咨询在GEO5当中如何模拟爆破工况,如果是采用拟静力法考虑爆破振动力,可以通过GEO5地震荷载中自定义水平地震系数的方法实现,本文将简述分析过程。</p><p>1. <strong>计算原理</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据《非煤露天矿边坡工程技术规范》(GB 51016-2014)附录D.2的说明,边坡稳定计算时,考虑爆破振动力,各条快的水平爆破力按下列公式计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1704781378952520.png" alt="image.png" width="116" height="122" style="width: 116px; height: 122px;"/></p><p>式中:</p><p>F<sub>i</sub><sup>’</sup>—第i条块爆破振动力的水平向等效静力(kN);</p><p>W<sub>i</sub>—第i条块的重量;</p><p>β<sub>i</sub>—第i条块爆破力系数,可取0.1~0.3;</p><p>a<sub>i</sub>—第i条块爆破振动质点水平向最大加速度(m/s<sup>2</sup>);</p><p>g—重力加速度(m/s<sup>2</sup>);</p><p>f—振动爆破频率(Hz);</p><p>V<sub>i</sub>—第i条块重心处质点向振动速度(cm/s);</p><p>Q—爆破装药量,分段延时爆破时取最大一段的装药量(kg);</p><p>R<sub>i</sub>—爆破区药量分布的几何中心至观测点的距离;</p><p>K、α—与采场地质条件、岩体性质、爆破条件等有关的系数,由振动检测和测试数据获取。</p><p>2. <strong>案例分析</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;某砂岩矿边坡坡高55m,根据初步设计,矿山采用分段逐孔起爆,最大一段(单孔)用药量为56.3kg,按《爆破安全规程》(GB6722-2014)取振动爆破频率为20Hz。爆破区药量分布的几何中心至观测点的综合距离取值为90m。参考《爆破安全规程》13.2.4参数建议值说明,K取150,α取1.5。</p><p style="text-align: center;">爆破区不同岩性的K,α取值建议</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1704781460971666.png" alt="image.png"/></p><p>根据以上参数,另外β<sub>i</sub>取0.12,计算得到</p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1704781521264233.png" alt="image.png" width="211" height="45" style="width: 211px; height: 45px;"/></p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1704781560373963.png" alt="image.png" width="210" height="20" style="width: 210px; height: 20px;"/></p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1704781596793746.png" alt="image.png" width="263" height="36" style="width: 263px; height: 36px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;打开GEO5土坡模块,建好模型后,将0.02直接输入到地震分析当中进行计算。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1704781623181860.png" alt="image.png" width="377" height="130" style="width: 377px; height: 130px;"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1704781649296032.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;以上即为GEO5当中模拟爆破工况分析的方法,文中提到的两本规范电子版可点击下载:</p><p style="line-height: 16px;"><img style="vertical-align: middle; margin-right: 2px;" src="https://wen.kulunsoft.com/stat ... t%3Ba style="font-size:12px; color:#0066cc;" href="https://wen.kulunsoft.com/uplo ... ot%3B title="GB 51016-2014 非煤露天矿边坡工程技术规范.pdf">GB 51016-2014 非煤露天矿边坡工程技术规范.pdf</a></p><p style="line-height: 16px;"><img style="vertical-align: middle; margin-right: 2px;" src="https://wen.kulunsoft.com/stat ... t%3Ba style="font-size:12px; color:#0066cc;" href="https://wen.kulunsoft.com/uplo ... ot%3B title="爆破安全规程GB6722-2014.pdf">爆破安全规程GB6722-2014.pdf</a></p>

GEO5某灰厂稳定性评价

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 995 次浏览 • 2023-10-17 11:17 • 来自相关话题

使用模块:GEO5土坡稳定性分析一、  项目背景       某排土场斜坡表面堆积土体较为松散,排土场边坡整体处于稳定状态,坡度较陡地段存在局部失稳的现象。局部失稳出现在现场实测剖面2处,表现为边坡顶部边缘浅层的土体滑落,土体滑落宽度约45m,高度约15m,坡向301°,坡顶边缘处的最大坡度约35°。       现场调查发现,排土场斜坡表面堆积土体较为松散,在降雨的冲刷及坡顶雨水汇集的作用下,坡面多处存在冲刷沟槽。其中,发育范围最大的一处冲刷沟槽位于排土场东坡,坡高约55m,坡度37°,坡向106°,冲刷沟槽长度约90m,最大宽度8m~10m,最大切割深度10m~12m。二、场地岩土材料①弃渣       本次勘察过程中,在弃渣层共进行了70m的重型圆锥动力触探试验。动探数据显示变异系数达到0.98,说明回填的密实度很不均匀,回填时间短,欠固结,回填时未进行碾压,主要呈松散~稍密状态,局部呈中密~密实状态。坝体、坝基经过碾压后变异系数在0.172,整体夯实后较均匀,稍密状态。      根据本次勘察及前期勘察资料,并结合该区域的建筑经验综合推荐本层土的地基承载力特征值fak=100kPa~200kPa,内聚力标准值Ck=6~10kPa,内摩擦角标准值Фk=30°~33°,渗透系数k>2.0×10-1cm/s。       碾压后的坝体承载力特征值fak可达180kPa,内摩擦角标准值Фk=33°,变形模量为16MPa。       筑坝材料为排土场土料,即煤矿剥离的石渣料(碎石料),该石渣料储量很大,足以满足本期10m高的筑灰坝要求。②粉质黏土       黄褐色、灰褐色,以可塑状态为主。本次勘测中,在该层进行了4次标准贯入试验,经修正后的锤击数(平均值)N=6击。       本层取土3件,物理力学性质指标平均值如下:       天然含水量为28.1%,天然孔隙比为0.824,重度为18.8kN/m3,饱和度为92.8%,液限为34.3%,塑限为20.8%,塑性指数为13.5,液性指数为0.54;直剪试验:内摩擦角为18.9°,内聚力为19.8kPa,压缩系数a1-2为0.38MPa-1,压缩模量为5.1MPa。属可塑状态中等压缩性土。       根据该层土的物理力学性质指标,并结合已有资料及标准贯入试验击数(N=6),综合推荐本层土的地基承载力特征值fak=150kPa。③黏土       可塑~硬塑状态,分布在泥岩、泥质砂岩顶部,为基岩风化形成的残积土层。本次勘测中,在该层进行了3次标准贯入试验,经修正后的锤击数(平均值)N=11击。       根据当地建筑经验及该层土的标准贯入试验击数(N=11),综合推荐本层土的地基承载力特征值fak=220kPa。④泥岩       本层以泥岩为主,部分地段夹泥质砂岩层,勘察范围内呈全风化状态。本次勘测中,在该层进行了4次标准贯入试验,经修正后的锤击数(平均值)N=22击。根据当地建筑经验及该层土的标准贯入试验击数(N=22),综合推荐本层土的地基承载力特征值fak=260KPa。       岩土材料指标如下:三、分析工况       根据《火力发电厂干式贮灰场设计规程》(DL/T 5488-2014)中的相关条文,坝体应进行沉降计算、抗滑稳定计算,抗震设防烈度为7度及以上地区的坝体应进行抗震分析,必要时考虑渗流的影响。本工程场地地震基本烈度为6度,因此不考虑地震的影响,非正常条件下仅考虑暴雨的影响。       各工况抗滑稳定安全系数应按表1的规定确定,干灰场抗滑稳定的计算按照正常运行条件、非正常运行条件以及考虑贮灰、暴雨作用划分了不同的计算工况组合。(详见表2)表1  平原干灰场挡灰堤设计标准       根据可行性研究报告,灰场总容积约为1.3×107m3。根据表2平原干灰场挡灰堤设计标准,确定灰堤的设计等级应为二级。内、外坡正常运行条件下抗滑稳定安全系数K均为1.15,非常运行条件抗滑稳定安全系数K为1.00。       本项目无需考虑渗流和调洪水位,故对坝体、排土场原始边坡、排土场+坝体进行正常运行条件和考虑暴雨的非常运行条件下的稳定性计算与分析。(见表2)表2  干灰场边坡抗滑稳定计算工况表四、稳定性分析工况1:排土场+未贮灰       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa =10754.03 kN/m滑面上抗滑力的总和 :  Fp = 26536.15  kN/m下滑力矩 : Ma = 2276413.66  kNm/m抗滑力矩 : Mp = 5617171.42  kNm/m安全系数 = 2.47 > 1.15。排土场边坡在此工况下满足稳定性要求。工况2:排土场+贮灰       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa = 11986.31 kN/m滑面上抗滑力的总和 :  Fp = 29521.04 kN/m下滑力矩 : Ma = 2746662.31  kNm/m抗滑力矩 : Mp = 6764746.44  kNm/m安全系数 = 2.46 > 1.15。排土场边坡在此工况下满足稳定性要求。工况3:排土场+未贮灰+暴雨       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa = 11472.25 kN/m滑面上抗滑力的总和 :  Fp = 23401.98 kN/m下滑力矩 : Ma = 2428445.61  kNm/m抗滑力矩 : Mp = 4953731.64  kNm/m安全系数 = 2.04 > 1.00。排土场边坡在此工况下满足稳定性要求。工况4:排土场+贮灰+暴雨       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa = 12806.02 kN/m滑面上抗滑力的总和 :  Fp = 26057.66 kN/m下滑力矩 : Ma = 2934499.20  kNm/m抗滑力矩 : Mp = 5971113.16  kNm/m安全系数 = 2.03 > 1.00。排土场边坡在此工况下满足稳定性要求。五、 总结        按照规范要求,灰厂稳定性涉及多工况分析,通过GEO5软件建模,不需要多工况重复建模,在一个文件中即可实现不同工况的验算,操作方便快捷,也便于计算源文件的管理。 查看全部
<p><strong>使用模块:</strong><strong>GEO5</strong><strong>土坡稳定性分析</strong></p><p><strong>一、&nbsp; </strong><strong>项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;某排土场斜坡表面堆积土体较为松散,排土场边坡整体处于稳定状态,坡度较陡地段存在局部失稳的现象。局部失稳出现在现场实测剖面2处,表现为边坡顶部边缘浅层的土体滑落,土体滑落宽度约45m,高度约15m,坡向301°,坡顶边缘处的最大坡度约35°。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697512130485426.png" alt="image.png" width="437" height="292" style="width: 437px; height: 292px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;现场调查发现,排土场斜坡表面堆积土体较为松散,在降雨的冲刷及坡顶雨水汇集的作用下,坡面多处存在冲刷沟槽。其中,发育范围最大的一处冲刷沟槽位于排土场东坡,坡高约55m,坡度37°,坡向106°,冲刷沟槽长度约90m,最大宽度8m~10m,最大切割深度10m~12m。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697512164238377.png" alt="image.png" width="453" height="296" style="width: 453px; height: 296px;"/></p><p><strong>二、</strong><strong>场地岩土材料</strong></p><p>①弃渣</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次勘察过程中,在弃渣层共进行了70m的重型圆锥动力触探试验。动探数据显示变异系数达到0.98,说明回填的密实度很不均匀,回填时间短,欠固结,回填时未进行碾压,主要呈松散~稍密状态,局部呈中密~密实状态。坝体、坝基经过碾压后变异系数在0.172,整体夯实后较均匀,稍密状态。</p><p>&nbsp; &nbsp; &nbsp; 根据本次勘察及前期勘察资料,并结合该区域的建筑经验综合推荐本层土的地基承载力特征值fak=100kPa~200kPa,内聚力标准值Ck=6~10kPa,内摩擦角标准值Фk=30°~33°,渗透系数k>2.0×10-1cm/s。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;碾压后的坝体承载力特征值fak可达180kPa,内摩擦角标准值Фk=33°,变形模量为16MPa。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;筑坝材料为排土场土料,即煤矿剥离的石渣料(碎石料),该石渣料储量很大,足以满足本期10m高的筑灰坝要求。</p><p>②粉质黏土</p><p>&nbsp; &nbsp; &nbsp; &nbsp;黄褐色、灰褐色,以可塑状态为主。本次勘测中,在该层进行了4次标准贯入试验,经修正后的锤击数(平均值)N=6击。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本层取土3件,物理力学性质指标平均值如下:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;天然含水量为28.1%,天然孔隙比为0.824,重度为18.8kN/m3,饱和度为92.8%,液限为34.3%,塑限为20.8%,塑性指数为13.5,液性指数为0.54;直剪试验:内摩擦角为18.9°,内聚力为19.8kPa,压缩系数a1-2为0.38MPa-1,压缩模量为5.1MPa。属可塑状态中等压缩性土。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据该层土的物理力学性质指标,并结合已有资料及标准贯入试验击数(N=6),综合推荐本层土的地基承载力特征值fak=150kPa。</p><p>③黏土</p><p>&nbsp; &nbsp; &nbsp; &nbsp;可塑~硬塑状态,分布在泥岩、泥质砂岩顶部,为基岩风化形成的残积土层。本次勘测中,在该层进行了3次标准贯入试验,经修正后的锤击数(平均值)N=11击。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据当地建筑经验及该层土的标准贯入试验击数(N=11),综合推荐本层土的地基承载力特征值fak=220kPa。</p><p>④泥岩</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本层以泥岩为主,部分地段夹泥质砂岩层,勘察范围内呈全风化状态。本次勘测中,在该层进行了4次标准贯入试验,经修正后的锤击数(平均值)N=22击。根据当地建筑经验及该层土的标准贯入试验击数(N=22),综合推荐本层土的地基承载力特征值fak=260KPa。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;岩土材料指标如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697512254244701.png" alt="image.png" width="469" height="271" style="width: 469px; height: 271px;"/></p><p><strong>三、分析工况</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据《火力发电厂干式贮灰场设计规程》(DL/T 5488-2014)中的相关条文,坝体应进行沉降计算、抗滑稳定计算,抗震设防烈度为7度及以上地区的坝体应进行抗震分析,必要时考虑渗流的影响。本工程场地地震基本烈度为6度,因此不考虑地震的影响,非正常条件下仅考虑暴雨的影响。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;各工况抗滑稳定安全系数应按表1的规定确定,干灰场抗滑稳定的计算按照正常运行条件、非正常运行条件以及考虑贮灰、暴雨作用划分了不同的计算工况组合。(详见表2)</p><p style="text-align: center;">表1&nbsp; 平原干灰场挡灰堤设计标准</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697512317855355.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据可行性研究报告,灰场总容积约为1.3×107m3。根据表2平原干灰场挡灰堤设计标准,确定灰堤的设计等级应为二级。内、外坡正常运行条件下抗滑稳定安全系数K均为1.15,非常运行条件抗滑稳定安全系数K为1.00。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本项目无需考虑渗流和调洪水位,故对坝体、排土场原始边坡、排土场+坝体进行正常运行条件和考虑暴雨的非常运行条件下的稳定性计算与分析。(见表2)</p><p style="text-align: center;">表2&nbsp; 干灰场边坡抗滑稳定计算工况表</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697512401954662.png" alt="image.png"/></p><p><strong>四、</strong><strong>稳定性分析</strong></p><p>工况1:排土场+未贮灰</p><p>&nbsp; &nbsp; &nbsp; &nbsp;边坡稳定性验算 (瑞典法(Fellenius))</p><p>滑面上下滑力的总和 :&nbsp; Fa =10754.03 kN/m</p><p>滑面上抗滑力的总和 :&nbsp; Fp = 26536.15&nbsp; kN/m</p><p>下滑力矩 : Ma = 2276413.66&nbsp; kNm/m</p><p>抗滑力矩 : Mp = 5617171.42&nbsp; kNm/m</p><p>安全系数 = 2.47 &gt; 1.15。</p><p>排土场边坡在此工况下满足稳定性要求。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697512477425829.png" alt="image.png"/></p><p>工况2:排土场+贮灰</p><p>&nbsp; &nbsp; &nbsp; &nbsp;边坡稳定性验算 (瑞典法(Fellenius))</p><p>滑面上下滑力的总和 :&nbsp; Fa = 11986.31 kN/m</p><p>滑面上抗滑力的总和 :&nbsp; Fp = 29521.04 kN/m</p><p>下滑力矩 : Ma = 2746662.31&nbsp; kNm/m</p><p>抗滑力矩 : Mp = 6764746.44&nbsp; kNm/m</p><p>安全系数 = 2.46 &gt; 1.15。</p><p>排土场边坡在此工况下满足稳定性要求。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697512516751462.png" alt="image.png"/></p><p>工况3:排土场+未贮灰+暴雨</p><p>&nbsp; &nbsp; &nbsp; &nbsp;边坡稳定性验算 (瑞典法(Fellenius))</p><p>滑面上下滑力的总和 :&nbsp; Fa = 11472.25 kN/m</p><p>滑面上抗滑力的总和 :&nbsp; Fp = 23401.98 kN/m</p><p>下滑力矩 : Ma = 2428445.61&nbsp; kNm/m</p><p>抗滑力矩 : Mp = 4953731.64&nbsp; kNm/m</p><p>安全系数 = 2.04 &gt; 1.00。</p><p>排土场边坡在此工况下满足稳定性要求。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697512552188940.png" alt="image.png"/></p><p>工况4:排土场+贮灰+暴雨</p><p>&nbsp; &nbsp; &nbsp; &nbsp;边坡稳定性验算 (瑞典法(Fellenius))</p><p>滑面上下滑力的总和 :&nbsp; Fa = 12806.02 kN/m</p><p>滑面上抗滑力的总和 :&nbsp; Fp = 26057.66 kN/m</p><p>下滑力矩 : Ma = 2934499.20&nbsp; kNm/m</p><p>抗滑力矩 : Mp = 5971113.16&nbsp; kNm/m</p><p>安全系数 = 2.03 &gt; 1.00。</p><p>排土场边坡在此工况下满足稳定性要求。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697512588816756.png" alt="image.png"/></p><p><strong>五、</strong><strong>&nbsp;</strong><strong>总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 按照规范要求,灰厂稳定性涉及多工况分析,通过GEO5软件建模,不需要多工况重复建模,在一个文件中即可实现不同工况的验算,操作方便快捷,也便于计算源文件的管理。</p>

GEO5某水库库岸边坡支护设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 1063 次浏览 • 2023-10-17 10:58 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、GEO5抗滑桩设计一、  项目背景       拟建项目为道路边坡支护工程。道路北侧为拟建水库,规划水库岸坡距离道路路肩最近约8.38m,岸坡建成后标高为108.5m,坡比为1:4;为施工水库,K0+740~K1+007 段已进行放坡开挖;该段道路路肩标高为117.7~118.6m。       支护范围:K0+660~K1+007临湖侧(道路北侧)       边坡高度:10~12m       地质条件:将勘探深度范围内的地层划分为5个工程地质层,自上而下分别为:①素填土(Q4ml),平均厚度为2.48m;②粉质粘土(Q4al+pl)可塑,局部分布,平均厚度为5.01m;③粉质粘土(Q4al+pl)场地均有分布,平均厚度为6.59m;④强风化泥质砂岩(K2z)岩体破碎,属极软岩,岩体基本质量等级为Ⅴ级,平均厚度为3.89m;⑤中风化泥质砂岩(K2z),岩体较完整,属极软岩,岩体基本质量等级为Ⅴ级       特殊要求:道路边坡支护结构不侵占库岸边线       安全等级:一级二、设计方案       综合考虑地质、环境、边坡高度等诸方面因素,本着“安全可靠,经济合理,技术可行,方便施工”的原则,临湖侧边坡采用桩板墙方案:桩顶4m进行1:1放坡,坡体采用加筋格栅加固,坡面进行生态绿化;抗滑桩桩径1.4m,间距3m,桩长18m,进入中风化泥质砂岩层。边坡支护平面图边坡支护典型剖面图三、设计成果分析       采用GEO5边坡稳定性验算 (毕肖普法(Bishop))结果显示:安全系数 = 1.48 > 1.35 边坡稳定性满足要求。       抗滑桩验算结果显示:最大位移53.2mm;岩石地基横向承载力满足要求;弯矩最大值=1221.20kNm/m, 剪力最大值= 262.71kN/m,主筋为32根直径28mm,剪力筋为直径10mm,间距200mm。四、总结       该项目为库岸边坡治理设计,分析过程考虑库水位、坡顶超载的影响,支护设计采用抗滑桩+加筋土的联合支挡形式。通过GEO5软件能快速实现建模计算,方便工程师对设计方案进行评估和验证。 查看全部
<p><strong>使用模块:GEO5土质边坡稳定性分析、GEO5抗滑桩设计</strong></p><p><strong>一、&nbsp; </strong><strong>项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;拟建项目为道路边坡支护工程。道路北侧为拟建水库,规划水库岸坡距离道路路肩最近约8.38m,岸坡建成后标高为108.5m,坡比为1:4;为施工水库,K0+740~K1+007 段已进行放坡开挖;该段道路路肩标高为117.7~118.6m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;支护范围:K0+660~K1+007临湖侧(道路北侧)</p><p>&nbsp; &nbsp; &nbsp; &nbsp;边坡高度:10~12m</p><p>&nbsp; &nbsp; &nbsp; &nbsp;地质条件:将勘探深度范围内的地层划分为5个工程地质层,自上而下分别为:①素填土(Q<sub>4</sub><sup>ml</sup>),平均厚度为2.48m;②粉质粘土(Q<sub>4</sub><sup>al+pl</sup>)可塑,局部分布,平均厚度为5.01m;③粉质粘土(Q<sub>4</sub><sup>al+pl</sup>)场地均有分布,平均厚度为6.59m;④强风化泥质砂岩(K<sub>2</sub>z)岩体破碎,属极软岩,岩体基本质量等级为Ⅴ级,平均厚度为3.89m;⑤中风化泥质砂岩(K<sub>2</sub>z),岩体较完整,属极软岩,岩体基本质量等级为Ⅴ级</p><p>&nbsp; &nbsp; &nbsp; &nbsp;特殊要求:道路边坡支护结构不侵占库岸边线</p><p>&nbsp; &nbsp; &nbsp; &nbsp;安全等级:一级</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697511212460799.png" alt="image.png"/></p><p><strong>二、</strong><strong>设计方案</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;综合考虑地质、环境、边坡高度等诸方面因素,本着“安全可靠,经济合理,技术可行,方便施工”的原则,临湖侧边坡采用桩板墙方案:桩顶4m进行1:1放坡,坡体采用加筋格栅加固,坡面进行生态绿化;抗滑桩桩径1.4m,间距3m,桩长18m,进入中风化泥质砂岩层。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697511251723472.png" alt="image.png"/></p><p style="text-align: center;">边坡支护平面图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697511265328824.png" alt="image.png" width="480" height="233" style="width: 480px; height: 233px;"/></p><p style="text-align: center;">边坡支护典型剖面图</p><p><strong>三、</strong><strong>设计成果分析</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;采用GEO5边坡稳定性验算 (毕肖普法(Bishop))结果显示:安全系数 = 1.48 &gt; 1.35 边坡稳定性满足要求。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697511389326134.png" alt="image.png" width="487" height="261" style="width: 487px; height: 261px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;抗滑桩验算结果显示:最大位移53.2mm;岩石地基横向承载力满足要求;弯矩最大值=1221.20kNm/m, 剪力最大值= 262.71kN/m,主筋为32根直径28mm,剪力筋为直径10mm,间距200mm。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697511416476893.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697511429938627.png" alt="image.png"/></p><p><strong>四、</strong><strong>总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;该项目为库岸边坡治理设计,分析过程考虑库水位、坡顶超载的影响,支护设计采用抗滑桩+加筋土的联合支挡形式。通过GEO5软件能快速实现建模计算,方便工程师对设计方案进行评估和验证。</p>

GEO5某输变电塔基边坡专项勘察设计

岩土工程南京库仑张工 发表了文章 • 2 个评论 • 962 次浏览 • 2023-10-17 09:34 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、抗滑桩一、项目背景       因场地重大基础设施建设,某输变电线路通道受限,某塔位须立于深厚人工填土边坡上。该人工填土边坡位于西部某大河北岸,边坡纵向长70m,高28-35m,坡顶宽100m,坡脚宽80m,整体坡度28°,坡脚和东侧边缘为已建重力式挡墙。根据平面布置,拟建塔位位于边坡东北角近坡顶区域。       据现场调查,拟建塔位附近区域的填土边坡已发生明显固结沉降变形,局部区域的表层有下滑变形痕迹,坡脚和东侧挡墙未见变形痕迹。经详细勘察及计算分析,在天然工况和暴雨工况下该边坡处于欠稳定状态,地震工况下处于不稳定状态,需对该人工填土边坡采取治理措施。塔位场地侧摄影像图二、边坡稳定性定性评价       根据多次踏勘现场情况进行对比,拟建塔位附近区域的填土边坡已发生明显固结沉降变形,局部区域的表层有下滑变形痕迹,坡脚和东侧挡墙未见变形痕迹。固结沉降变形主要表现为坡顶的混凝土路面、硬化地面和坡顶混凝土输送中心的重力式挡墙开裂,排水沟开裂,分级马道开裂下沉,框格梁开裂,正六边形砼块破裂,土体与框格梁脱离、脱空,以及植草坡面开裂、下错等。边坡坡脚和侧面挡墙未见开裂、倾斜和滑移等变形,坡体无整体蠕滑迹象。       综上所述,该人工填土边坡尚未经历雨季,在目前的状态下,局部产生固结沉降变形,坡体表层松散土体局部蠕滑,无整体变形迹象。塔位附近的坡面填土表层蠕滑三、计算工况和参数选取       根据边坡失稳特征及可能出现的各种载荷情况,计算中主要考虑降雨、地震等因素。参照《中国地震动参数区划图》(GB18306-2015)及《建筑抗震设计规范》(GB50011-2010,2016年版),工程区地震基本烈度为Ⅷ度,地震动峰值加速度为0.30g,综合水平地震系数取0.075。       本工程防治工程安全等级为Ⅰ级,根据《建筑边坡工程技术规范》(GB 50330-2013)表5.3.2规定,计算工况确定如下:       Ⅰ工况——天然工况,安全系数取1.35。       Ⅱ工况——暴雨工况,安全系数取1.25。       Ⅲ工况——地震工况,安全系数取1.15。       本次边坡稳定性计算中所采用的有关岩土物理力学参数,根据场区边坡勘察的室内外试验成果、反演法计算结果、地区工程经验、边坡变形现状、边坡的时间效应等因素,综合按自然状态(工况Ⅰ)、暴雨状态(工况Ⅱ)和地震状态 (工况Ⅲ)推荐选用。四、天然边坡稳定性评价       根据计算模型和计算参数,在采用圆弧法计算边坡稳定性时,主要采用GEO5岩土软件的“土质边坡稳定分析”模块,分析边坡在天然工况、暴雨工况和地震工况下的最不利滑动面和稳定性。本次主要针对与拟建铁塔所在位置密切相关的最不利剖面7-7’和8-8’进行计算,计算结果如下表。边坡圆弧法稳定性计算成果统计表(7-7’剖面)边坡圆弧法稳定性计算成果统计表(7-7’剖面,地面超载F=2×400kN)边坡圆弧法稳定性计算成果统计表(8-8’剖面)边坡整体失稳计算简图(7-7’剖面,暴雨工况,Fs=1.01)       以上计算表中的剩余下滑力为坡体整体滑动时的剩余下滑力,由于铁塔位于近坡顶区域,铁塔所在位置的剩余下滑力与上表中的剩余下滑力会有差异。参照现场踏勘调查与定性分析,考虑现有挡墙的作用,该边坡在天然状态(无超载条件)下处于基本稳定,在暴雨状态下处于欠稳定,在地震工况下处于不稳定,需采取治理措施。       当考虑超载时,该边坡在天然状态(可变超载为2×400kN条件)下处于基本稳定,坡顶超载对边坡整体稳定性影响较小,在暴雨工况下处于欠稳定,在地震工况下处于不稳定,需采取治理措施。五、支护方案设计       根据勘查结果,参考类似工程治理的经验教训,经过多次评审比选,为保证输电线路长期运行安全,综合边坡的调查和稳定性分析结果、现场的交通、场地条件、施工工期和施工安全等,提出了2种边坡治理方案,方案一:三排圆形抗滑桩+截排水沟;方案二:一排圆形抗滑桩+清方+截排水沟。下面将分别叙述。方案一:三排圆形抗滑桩+截排水沟       根据现场地形条件和勘察成果,结合铁塔所在位置,采用三排共计17根抗滑桩进行边坡治理,第一排抗滑桩位于坡顶塔位上坡侧,共7根,第二排抗滑桩位于塔位A腿上方、BD腿下方的马道,共6根,第三排抗滑桩位于A腿下坡侧的马道,共4根。桩间距均为5m。7-7’剖面暴雨工况下整体稳定性计算简图7-7’剖面暴雨工况下局部稳定性计算简图(第一排下坡侧)7-7’剖面暴雨工况下局部稳定性计算简图(第二排下坡侧)8-8’剖面暴雨工况下整体稳定性计算简图8-8’剖面暴雨工况下局部稳定性计算简图(第一排下坡侧)8-8’剖面暴雨工况下局部稳定性计算简图(第二排下坡侧)       通过以上计算可得,设置抗滑桩后,边坡整体稳定性和局部稳定性均满足要求。方案二:一排抗滑桩+清方+截排水沟       该方案是在坡顶处布置一排抗滑桩,桩长为27m,桩径为2.8m,桩中心间距5m,共计10根抗滑桩。桩下坡侧铁塔基础附近采用部分挖方,挖方后在抗滑桩悬臂段挂桩间挡土板,清方区域的挖方量约1.0万m3。暴雨工况下整体稳定性计算简图(清方后)暴雨工况下局部稳定性计算简图(清方后)       通过以上计算可得,坡顶设置抗滑桩并清方后,边坡整体稳定性和局部稳定性均满足要求。六、总结       结合GEO5土质边坡稳定分析、抗滑桩验算模块,对西部地区某输变电塔基边坡进行了分析和计算,验证设计提出的两种方案,建模速度快,解决了多工况计算问题,为项目的实施提供了技术支撑。 查看全部
<p><strong>使用模块:GEO5土质边坡稳定性分析、抗滑桩</strong></p><p><strong>一、</strong><strong>项目背景</strong><br/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;因场地重大基础设施建设,某输变电线路通道受限,某塔位须立于深厚人工填土边坡上。该人工填土边坡位于西部某大河北岸,边坡纵向长70m,高28-35m,坡顶宽100m,坡脚宽80m,整体坡度28°,坡脚和东侧边缘为已建重力式挡墙。根据平面布置,拟建塔位位于边坡东北角近坡顶区域。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;据现场调查,拟建塔位附近区域的填土边坡已发生明显固结沉降变形,局部区域的表层有下滑变形痕迹,坡脚和东侧挡墙未见变形痕迹。经详细勘察及计算分析,在天然工况和暴雨工况下该边坡处于欠稳定状态,地震工况下处于不稳定状态,需对该人工填土边坡采取治理措施。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697505810307040.png" alt="image.png" width="446" height="278" style="width: 446px; height: 278px;"/></p><p style="text-align: center;">塔位场地侧摄影像图</p><p><strong>二、</strong><strong>边坡稳定性定性评价</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据多次踏勘现场情况进行对比,拟建塔位附近区域的填土边坡已发生明显固结沉降变形,局部区域的表层有下滑变形痕迹,坡脚和东侧挡墙未见变形痕迹。固结沉降变形主要表现为坡顶的混凝土路面、硬化地面和坡顶混凝土输送中心的重力式挡墙开裂,排水沟开裂,分级马道开裂下沉,框格梁开裂,正六边形砼块破裂,土体与框格梁脱离、脱空,以及植草坡面开裂、下错等。边坡坡脚和侧面挡墙未见开裂、倾斜和滑移等变形,坡体无整体蠕滑迹象。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;综上所述,该人工填土边坡尚未经历雨季,在目前的状态下,局部产生固结沉降变形,坡体表层松散土体局部蠕滑,无整体变形迹象。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697505860210554.png" alt="image.png"/></p><p style="text-align: center;">塔位附近的坡面填土表层蠕滑</p><p><strong>三、</strong><strong>计算工况和参数选取</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据边坡失稳特征及可能出现的各种载荷情况,计算中主要考虑降雨、地震等因素。参照《中国地震动参数区划图》(GB18306-2015)及《建筑抗震设计规范》(GB50011-2010,2016年版),工程区地震基本烈度为Ⅷ度,地震动峰值加速度为0.30g,综合水平地震系数取0.075。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本工程防治工程安全等级为Ⅰ级,根据《建筑边坡工程技术规范》(GB 50330-2013)表5.3.2规定,计算工况确定如下:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;Ⅰ工况——天然工况,安全系数取1.35。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;Ⅱ工况——暴雨工况,安全系数取1.25。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;Ⅲ工况——地震工况,安全系数取1.15。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次边坡稳定性计算中所采用的有关岩土物理力学参数,根据场区边坡勘察的室内外试验成果、反演法计算结果、地区工程经验、边坡变形现状、边坡的时间效应等因素,综合按自然状态(工况Ⅰ)、暴雨状态(工况Ⅱ)和地震状态 (工况Ⅲ)推荐选用。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697505977877909.png" alt="image.png"/></p><p><strong>四、</strong><strong>天然边坡稳定性评价</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据计算模型和计算参数,在采用圆弧法计算边坡稳定性时,主要采用GEO5岩土软件的“土质边坡稳定分析”模块,分析边坡在天然工况、暴雨工况和地震工况下的最不利滑动面和稳定性。本次主要针对与拟建铁塔所在位置密切相关的最不利剖面7-7’和8-8’进行计算,计算结果如下表。</p><p style="text-align: center;">边坡圆弧法稳定性计算成果统计表(7-7’剖面)</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506080619100.png" alt="image.png"/></p><p style="text-align: center;">边坡圆弧法稳定性计算成果统计表(7-7’剖面,地面超载F=2×400kN)</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506107310719.png" alt="image.png"/></p><p style="text-align: center;">边坡圆弧法稳定性计算成果统计表(8-8’剖面)</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506138301038.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506158571092.png" alt="image.png" width="488" height="277" style="width: 488px; height: 277px;"/></p><p style="text-align: center;">边坡整体失稳计算简图(7-7’剖面,暴雨工况,Fs=1.01)<br/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;以上计算表中的剩余下滑力为坡体整体滑动时的剩余下滑力,由于铁塔位于近坡顶区域,铁塔所在位置的剩余下滑力与上表中的剩余下滑力会有差异。参照现场踏勘调查与定性分析,考虑现有挡墙的作用,该边坡在天然状态(无超载条件)下处于基本稳定,在暴雨状态下处于欠稳定,在地震工况下处于不稳定,需采取治理措施。</p><p style="text-align: center;">&nbsp; &nbsp; &nbsp; &nbsp;当考虑超载时,该边坡在天然状态(可变超载为2×400kN条件)下处于基本稳定,坡顶超载对边坡整体稳定性影响较小,在暴雨工况下处于欠稳定,在地震工况下处于不稳定,需采取治理措施。</p><p><strong>五、</strong><strong>支护方案设计</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据勘查结果,参考类似工程治理的经验教训,经过多次评审比选,为保证输电线路长期运行安全,综合边坡的调查和稳定性分析结果、现场的交通、场地条件、施工工期和施工安全等,提出了2种边坡治理方案,方案一:三排圆形抗滑桩+截排水沟;方案二:一排圆形抗滑桩+清方+截排水沟。下面将分别叙述。</p><p><strong>方案一:三排圆形抗滑桩</strong><strong>+</strong><strong>截排水沟</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据现场地形条件和勘察成果,结合铁塔所在位置,采用三排共计17根抗滑桩进行边坡治理,第一排抗滑桩位于坡顶塔位上坡侧,共7根,第二排抗滑桩位于塔位A腿上方、BD腿下方的马道,共6根,第三排抗滑桩位于A腿下坡侧的马道,共4根。桩间距均为5m。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506215274951.png" alt="image.png"/></p><p style="text-align: center;">7-7’剖面暴雨工况下整体稳定性计算简图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506240893766.png" alt="image.png"/></p><p style="text-align: center;">7-7’剖面暴雨工况下局部稳定性计算简图(第一排下坡侧)</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506264838097.png" alt="image.png"/></p><p style="text-align: center;">7-7’剖面暴雨工况下局部稳定性计算简图(第二排下坡侧)</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506294293897.png" alt="image.png"/></p><p style="text-align: center;">8-8’剖面暴雨工况下整体稳定性计算简图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506313503760.png" alt="image.png"/></p><p style="text-align: center;">8-8’剖面暴雨工况下局部稳定性计算简图(第一排下坡侧)</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506331953545.png" alt="image.png"/></p><p style="text-align: center;">8-8’剖面暴雨工况下局部稳定性计算简图(第二排下坡侧)</p><p>&nbsp; &nbsp; &nbsp; &nbsp;通过以上计算可得,设置抗滑桩后,边坡整体稳定性和局部稳定性均满足要求。</p><p><strong>方案二:一排抗滑桩</strong><strong>+</strong><strong>清方</strong><strong>+</strong><strong>截排水沟</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;该方案是在坡顶处布置一排抗滑桩,桩长为27m,桩径为2.8m,桩中心间距5m,共计10根抗滑桩。桩下坡侧铁塔基础附近采用部分挖方,挖方后在抗滑桩悬臂段挂桩间挡土板,清方区域的挖方量约1.0万m<sup>3</sup>。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506384203723.png" alt="image.png"/></p><p style="text-align: center;">暴雨工况下整体稳定性计算简图(清方后)</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506404474775.png" alt="image.png"/></p><p style="text-align: center;">暴雨工况下局部稳定性计算简图(清方后)<br/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;通过以上计算可得,坡顶设置抗滑桩并清方后,边坡整体稳定性和局部稳定性均满足要求。</p><p><strong>六、总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;结合GEO5土质边坡稳定分析、抗滑桩验算模块,对西部地区某输变电塔基边坡进行了分析和计算,验证设计提出的两种方案,建模速度快,解决了多工况计算问题,为项目的实施提供了技术支撑。</p>

GEO5华中地区某处高边坡变更设计

岩土工程南京库仑张工 发表了文章 • 1 个评论 • 1005 次浏览 • 2023-10-16 09:29 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、抗滑桩一、 项目背景       项目高边坡出露岩性为泥质砂岩,岩性软弱且节理发育,开挖后高边坡稳定性较差,防护难度较大。原设计在高边坡第3级平台位置设置卸载平台,卸载平台横向宽约170m,对平台以上标高进行开挖卸载。因标段内以缺方为主,将卸载平台范围内设置为取土场。但由于项目征地困难,原设计方案难以实施,因此在征地范围内对原设计方案进行调整。边坡原设计防护型式工程地质剖面图二、边坡工程地质条件       高边坡段场地覆盖层主要为为第三系泥质砂岩具体工程地质特性分述如下:       ①1全风化泥质砂岩:黄褐色,原岩风化强烈,结构构造已破坏,局部具高岭土化。岩芯呈土状,含原岩风化残块,揭露厚度为2.20~2.80m,土石等级为Ⅲ级硬土。       ①2.强风化泥质砂岩:红褐色,泥质砂质结构,层状构造,岩质极软,手掰易断,局部具高岭土化。岩芯多呈短柱状、块状;揭露厚度为13.20~17.80m,土石等级为Ⅳ级软石。       ①3中风化泥质砂岩:红褐色,泥质砂质结构,层状构造,岩质极软,局部具高岭土化。岩芯呈柱状、短柱状,天然抗压强度0.4~1.6MPa;未揭穿,土石等级为Ⅳ级软石。边坡稳定性计算参数表三、设计方案       本工况进行了三种方案设计,分别是方案1:分级开挖+分级锚固、方案2:方形桩板墙+分级加固和方案3:圆形桩板墙+分级加固,每种方案分别进行了加固前和加固后的天然、暴雨情况分析,其中天然工况安全系数按1.25控制,暴雨工况安全系数按1.15控制。设计方案1:分级开挖+分级锚固       结合边坡的地形和稳定坡率,对边坡采用1:1.0进行开挖,边坡最大开挖高度为4级边坡,每级坡高8m,1、3级坡顶平台宽度为2m,第2级坡顶平台宽度为12m,1-4边坡坡率为1:1.0。       边坡防护方案:因开挖后边坡稳定性较差,边坡的防护方案以锚杆框架、锚索框架加固为主。根据开挖断面,边坡的1-4级均处于强风化层。边坡第1-3采用锚索框架+植生袋绿化,边坡锚固选取中风化层作为锚固层,结合中风化层深度,边坡第1-3级锚索长度分别为26m、28m、32m。第4级采用锚杆框架,锚固段深入强风化层,锚固深度12m。       经计算后,边坡加固前的天然工况下的稳定性系数为1.15,暴雨工况下的稳定性系数达0.98,均不满足规范要求。经过加固后的天然工况下的稳定性系数为1.35,暴雨工况下的稳定性系数达1.17,满足规范要求,边坡的防护方案可行。(1)边坡开挖防护前天然工况:边坡稳定性系数Fs=1.15<1.25,不满足规范要求暴雨工况:边坡稳定性系数Fs=0.98<1.15,不满足规范要求(2)边坡开挖防护后天然工况:边坡稳定性系数Fs=1.35>1.25,满足要求 暴雨工况:边坡稳定性系数Fs=1.17>1.15,满足要求设计方案2:方形桩板墙+分级锚固       考虑本项目边坡岩性为泥质砂岩,坡体内发育顺向结构面,边坡开挖过程中坡表可能发生浅层滑塌。分级开挖和防护难度较大。设计考虑采用桩板墙进行预加固。       边坡防护方案:边坡第1级采用方形桩板墙预加固,尽可能减少路堑边坡开挖。桩顶往上按8m分级放坡,坡率为1:1.0,坡顶上第1级边坡采用锚索框架+植生袋绿化加固,为提高抗滑桩体稳定性,在距离桩顶1m和3m位置分别设置1孔锚索。       采用不平衡推力法(隐式),按最大下滑力搜索最薄弱滑面,经计算后,边坡加固前的天然工况下的稳定性系数为1.07,暴雨工况下的稳定性系数为0.98,均不满足规范要求。经过抗滑桩(桩身抗滑承载力为3000kN)加固后的天然工况下的稳定性系数为1.39,暴雨工况下的稳定性系数达1.18,满足规范要求,边坡的防护方案可行。(1)边坡开挖防护前天然工况:边坡稳定性系数Fs=1.07<1.25,不满足规范要求暴雨工况:边坡稳定性系数Fs=0.98<1.15,不满足规范要求(2)边坡开挖防护后天然工况:边坡稳定性系数Fs=1.39>1.25,满足要求暴雨工况:边坡稳定性系数Fs=1.18>1.15,满足要求(3)抗滑桩验算       由于暴雨工况下更为不利,此处仅暴雨工况下抗滑桩验算结果。桩身锚索加固抗滑桩位移、土压力分析截面强度分析截面配筋验算锚索验算挡板配筋验算设计方案3:圆形桩板墙+分级锚固       考虑方形桩成孔施工困难较大,需采用人工挖孔桩,施工危险性较大。设计考虑采用机械成孔方式做圆形抗滑桩。       边坡防护方案:边坡第1级采用圆形抗滑桩进行预加固,机械成孔施工效率较高。为提高抗滑桩体稳定性,在距离桩顶1m和3m位置分别设置1孔锚索。桩顶往上按8m分级放坡,坡率为1:1.0,坡顶上第1级边坡采用锚索框架+植生袋绿化加固。       采用不平衡推力法(隐式),按最大下滑力搜索最薄弱滑面,经计算后,边坡加固前的天然工况下的稳定性系数为1.07。暴雨工况下的稳定性系数为0.98,均不满足规范要求。经过抗滑桩(桩身抗滑承载力为3000kN)加固后的天然工况下的稳定性系数为1.39,暴雨工况下的稳定性系数达1.18,满足规范要求,边坡的防护方案可行。方案三典型设计图       由于圆形抗滑桩土坡模块计算与方形桩板墙一致,故这里仅对圆形抗滑桩验算部分进行展示。截面配筋验算挡板配筋验算四、总结       考虑到项目缺土,以及综合考虑造价等因素,最终方案选择方案1:分级开挖+分级加固方案,并且要求现场开挖一级、防护一级。       结合GEO5土质边坡稳定分析、抗滑桩验算模块,对中部地区某处高边坡变更设计进行了分析和计算,很好的解决了设计问题,为设计方案提供了依据,取得满意结果,最终方案已指导现场顺利施工。 查看全部
<p><strong>使用模块:GEO5土质边坡稳定性分析、抗滑桩</strong><br/></p><p><strong>一、&nbsp;</strong><strong>项目背景</strong><br/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;项目高边坡出露岩性为泥质砂岩,岩性软弱且节理发育,开挖后高边坡稳定性较差,防护难度较大。原设计在高边坡第3级平台位置设置卸载平台,卸载平台横向宽约170m,对平台以上标高进行开挖卸载。因标段内以缺方为主,将卸载平台范围内设置为取土场。但由于项目征地困难,原设计方案难以实施,因此在征地范围内对原设计方案进行调整。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697418170606020.png" alt="image.png"/></p><p style="text-align: center;">边坡原设计防护型式</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697418203729896.png" alt="image.png" width="434" height="315" style="width: 434px; height: 315px;"/></p><p style="text-align: center;">工程地质剖面图</p><p><strong>二、</strong><strong>边坡工程地质条件</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;高边坡段场地覆盖层主要为为第三系泥质砂岩具体工程地质特性分述如下:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①<sub>1</sub>全风化泥质砂岩:黄褐色,原岩风化强烈,结构构造已破坏,局部具高岭土化。岩芯呈土状,含原岩风化残块,揭露厚度为2.20~2.80m,土石等级为Ⅲ级硬土。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①<sub>2</sub>.强风化泥质砂岩:红褐色,泥质砂质结构,层状构造,岩质极软,手掰易断,局部具高岭土化。岩芯多呈短柱状、块状;揭露厚度为13.20~17.80m,土石等级为Ⅳ级软石。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①<sub>3</sub>中风化泥质砂岩:红褐色,泥质砂质结构,层状构造,岩质极软,局部具高岭土化。岩芯呈柱状、短柱状,天然抗压强度0.4~1.6MPa;未揭穿,土石等级为Ⅳ级软石。</p><p style="text-align: center;">边坡稳定性计算参数表</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697418298136024.png" alt="image.png"/></p><p><strong>三、设计方案</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本工况进行了三种方案设计,分别是方案1:分级开挖+分级锚固、方案2:方形桩板墙+分级加固和方案3:圆形桩板墙+分级加固,每种方案分别进行了加固前和加固后的天然、暴雨情况分析,其中天然工况安全系数按1.25控制,暴雨工况安全系数按1.15控制。</p><p><strong>设计方案</strong><strong>1</strong><strong>:分级开挖</strong><strong>+</strong><strong>分级锚固</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;结合边坡的地形和稳定坡率,对边坡采用1:1.0进行开挖,边坡最大开挖高度为4级边坡,每级坡高8m,1、3级坡顶平台宽度为2m,第2级坡顶平台宽度为12m,1-4边坡坡率为1:1.0。</p><p><strong>&nbsp; &nbsp; &nbsp; &nbsp;边坡防护方案:</strong>因开挖后边坡稳定性较差,边坡的防护方案以锚杆框架、锚索框架加固为主。根据开挖断面,边坡的1-4级均处于强风化层。边坡第1-3采用锚索框架+植生袋绿化,边坡锚固选取中风化层作为锚固层,结合中风化层深度,边坡第1-3级锚索长度分别为26m、28m、32m。第4级采用锚杆框架,锚固段深入强风化层,锚固深度12m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;经计算后,边坡加固前的天然工况下的稳定性系数为1.15,暴雨工况下的稳定性系数达0.98,均不满足规范要求。经过加固后的天然工况下的稳定性系数为1.35,暴雨工况下的稳定性系数达1.17,满足规范要求,边坡的防护方案可行。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697418357520663.png" alt="image.png" width="478" height="261" style="width: 478px; height: 261px;"/></p><p><br/></p><p>(1)边坡开挖防护前</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697418394164409.png" alt="image.png" width="443" height="287" style="width: 443px; height: 287px;"/></p><p style="text-align: center;">天然工况:边坡稳定性系数Fs=1.15&lt;1.25,不满足规范要求</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697418463342961.png" alt="image.png" width="441" height="278" style="width: 441px; height: 278px;"/></p><p style="text-align: center;">暴雨工况:边坡稳定性系数Fs=0.98&lt;1.15,不满足规范要求</p><p>(2)边坡开挖防护后</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697418592805739.png" alt="image.png" width="436" height="296" style="width: 436px; height: 296px;"/></p><p style="text-align: center;">天然工况:边坡稳定性系数Fs=1.35&gt;1.25,满足要求</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697418624205272.png" alt="image.png" width="437" height="285" style="width: 437px; height: 285px;"/></p><p style="text-align: center;">&nbsp;暴雨工况:边坡稳定性系数Fs=1.17&gt;1.15,满足要求</p><p><strong>设计方案</strong><strong>2</strong><strong>:方形桩板墙</strong><strong>+</strong><strong>分级锚固</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;考虑本项目边坡岩性为泥质砂岩,坡体内发育顺向结构面,边坡开挖过程中坡表可能发生浅层滑塌。分级开挖和防护难度较大。设计考虑采用桩板墙进行预加固。</p><p><strong>&nbsp; &nbsp; &nbsp; &nbsp;边坡防护方案:</strong>边坡第1级采用方形桩板墙预加固,尽可能减少路堑边坡开挖。桩顶往上按8m分级放坡,坡率为1:1.0,坡顶上第1级边坡采用锚索框架+植生袋绿化加固,为提高抗滑桩体稳定性,在距离桩顶1m和3m位置分别设置1孔锚索。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;采用不平衡推力法(隐式),按最大下滑力搜索最薄弱滑面,经计算后,边坡加固前的天然工况下的稳定性系数为1.07,暴雨工况下的稳定性系数为0.98,均不满足规范要求。经过抗滑桩(桩身抗滑承载力为3000kN)加固后的天然工况下的稳定性系数为1.39,暴雨工况下的稳定性系数达1.18,满足规范要求,边坡的防护方案可行。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697418894101495.png" alt="image.png" width="485" height="264" style="width: 485px; height: 264px;"/></p><p>(1)边坡开挖防护前</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697418946200929.png" alt="image.png" width="424" height="295" style="width: 424px; height: 295px;"/></p><p style="text-align: center;">天然工况:边坡稳定性系数Fs=1.07&lt;1.25,不满足规范要求</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419373702575.png" alt="image.png" width="424" height="303" style="width: 424px; height: 303px;"/></p><p style="text-align: center;">暴雨工况:边坡稳定性系数Fs=0.98&lt;1.15,不满足规范要求</p><p>(2)边坡开挖防护后</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419418576124.png" alt="image.png" width="424" height="310" style="width: 424px; height: 310px;"/></p><p style="text-align: center;">天然工况:边坡稳定性系数Fs=1.39&gt;1.25,满足要求</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419469392686.png" alt="image.png" width="428" height="302" style="width: 428px; height: 302px;"/></p><p style="text-align: center;">暴雨工况:边坡稳定性系数Fs=1.18&gt;1.15,满足要求</p><p>(3)抗滑桩验算</p><p>&nbsp; &nbsp; &nbsp; &nbsp;由于暴雨工况下更为不利,此处仅暴雨工况下抗滑桩验算结果。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419520352850.png" alt="image.png" width="344" height="310" style="width: 344px; height: 310px;"/></p><p style="text-align: center;">桩身锚索加固</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419562433346.png" alt="image.png"/></p><p style="text-align: center;">抗滑桩位移、土压力分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419581941910.png" alt="image.png"/></p><p style="text-align: center;">截面强度分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419609566154.png" alt="image.png"/></p><p style="text-align: center;">截面配筋验算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419624408128.png" alt="image.png"/></p><p style="text-align: center;">锚索验算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419636524582.png" alt="image.png"/></p><p style="text-align: center;">挡板配筋验算</p><p><strong>设计方案</strong><strong>3</strong><strong>:圆形桩板墙</strong><strong>+</strong><strong>分级锚固</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;考虑方形桩成孔施工困难较大,需采用人工挖孔桩,施工危险性较大。设计考虑采用机械成孔方式做圆形抗滑桩。</p><p><strong>&nbsp; &nbsp; &nbsp; &nbsp;边坡防护方案:</strong>边坡第1级采用圆形抗滑桩进行预加固,机械成孔施工效率较高。为提高抗滑桩体稳定性,在距离桩顶1m和3m位置分别设置1孔锚索。桩顶往上按8m分级放坡,坡率为1:1.0,坡顶上第1级边坡采用锚索框架+植生袋绿化加固。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;采用不平衡推力法(隐式),按最大下滑力搜索最薄弱滑面,经计算后,边坡加固前的天然工况下的稳定性系数为1.07。暴雨工况下的稳定性系数为0.98,均不满足规范要求。经过抗滑桩(桩身抗滑承载力为3000kN)加固后的天然工况下的稳定性系数为1.39,暴雨工况下的稳定性系数达1.18,满足规范要求,边坡的防护方案可行。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419698900875.png" alt="image.png" width="501" height="268" style="width: 501px; height: 268px;"/></p><p style="text-align: center;">方案三典型设计图</p><p>&nbsp; &nbsp; &nbsp; &nbsp;由于圆形抗滑桩土坡模块计算与方形桩板墙一致,故这里仅对圆形抗滑桩验算部分进行展示。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419738319154.png" alt="image.png"/></p><p style="text-align: center;">截面配筋验算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419748654329.png" alt="image.png"/></p><p style="text-align: center;">挡板配筋验算</p><p><strong>四、总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;考虑到项目缺土,以及综合考虑造价等因素,最终方案选择方案1:分级开挖+分级加固方案,并且要求现场开挖一级、防护一级。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;结合GEO5土质边坡稳定分析、抗滑桩验算模块,对中部地区某处高边坡变更设计进行了分析和计算,很好的解决了设计问题,为设计方案提供了依据,取得满意结果,最终方案已指导现场顺利施工。</p>

抗滑桩桩底支承条件

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 931 次浏览 • 2023-10-07 10:01 • 来自相关话题

爆破工况下边坡稳定性

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 885 次浏览 • 2023-09-25 14:48 • 来自相关话题

库伦GEO5计算稳定时能否考虑冻胀情况?

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 799 次浏览 • 2023-08-01 12:02 • 来自相关话题

条新动态, 点击查看
从图中可以看出,并不是不能计算稳定性,而是无法计算作用在桩身的剩余下滑力和抗滑力。因为在土质边坡稳定分析模块中,软件并不知道滑坡推力的分布形式,因此无法确定作用在下面这部分桩的剩余下滑力。如果一定要求得作用在桩上的剩余下滑力,可以把抗滑桩衍生值土石坝的表面,求... 显示全部 »
从图中可以看出,并不是不能计算稳定性,而是无法计算作用在桩身的剩余下滑力和抗滑力。因为在土质边坡稳定分析模块中,软件并不知道滑坡推力的分布形式,因此无法确定作用在下面这部分桩的剩余下滑力。如果一定要求得作用在桩上的剩余下滑力,可以把抗滑桩衍生值土石坝的表面,求得剩余下滑力,然后按照剩余下滑的分布,换算作用在抗滑桩上的推力,最后在单独使用「抗滑桩设计」模块设计即可。这个思路在 @库仑戚工 给出桩基+挡墙组合结构中已有提到。
库仑吴汶垣

库仑吴汶垣 回答了问题 • 2017-09-19 19:14 • 4 个回答 不感兴趣

关于土坡水位骤降的问题

赞同来自:

GEO5水位骤降相关帮助:https://wen.kulunsoft.com/dochelp/1156 帮助中有一处说明如下:如果为透水土层,X = 1,其他情况下,X = 0。此处说明并不完全正确,我们会修改此处的帮助。实际上准确的说明应该是完全透水时「初始... 显示全部 »
GEO5水位骤降相关帮助:https://wen.kulunsoft.com/dochelp/1156 帮助中有一处说明如下:如果为透水土层,X = 1,其他情况下,X = 0。此处说明并不完全正确,我们会修改此处的帮助。实际上准确的说明应该是完全透水时「初始孔隙水压力折减系数」X取1,完全不透水时「初始孔隙水压力折减系数」X取0。其他情况介于0和1之间,具体怎么取需要由经验确定。实际上「初始孔隙水压力折减系数」X是用来表示水位突然变化时土体内某点的孔隙水压力在那一瞬间的变化情况。例如不透水的黏土,我们可以认为水位突然变化的瞬间,黏土中的孔隙水来不及排出,因此孔隙水压力是不变化的,而对于砂土,孔隙水可以立即排除,从而形成新的孔隙水压力。
郑工

郑工 回答了问题 • 2019-12-02 14:29 • 2 个回答 不感兴趣

抗滑桩的剩余下滑力问题

赞同来自:

感谢您的回复,关于桩前抗力我前面好像说错了,按帮助里面的作用在抗滑桩上的力图中,桩前抗力实际是P=T-F0,b,也就是说抗滑桩上实际所受的推力只是剪出口的剩余下滑力。我这样理解对吗?那这样是不是假设桩可有任意大的变形,桩前抗力完全发挥。关于整体模型的计算步骤是... 显示全部 »
感谢您的回复,关于桩前抗力我前面好像说错了,按帮助里面的作用在抗滑桩上的力图中,桩前抗力实际是P=T-F0,b,也就是说抗滑桩上实际所受的推力只是剪出口的剩余下滑力。我这样理解对吗?那这样是不是假设桩可有任意大的变形,桩前抗力完全发挥。关于整体模型的计算步骤是:裸坡搜索最大剩余下滑力(折线滑动?怎么读取拟设抗滑桩位置的剩余下滑力)——添加抗滑桩(此处桩的抗剪取多少合适?对分析结果有影响。加桩之后还要分析一次,分析要求安全系数必须大于设计值吗?那这里得到的桩前及桩后的剩余下滑力是没用的吗?做这一步的目的是什么呢)——抗滑桩验算(那这里的桩前抗力及桩后推力是以哪个为准,是裸坡时候桩位置的的还是加桩后分析的?)还有一个BUG我不知道是不是个别的,在滑动面分析结束一直点那个滑弧的话会报错,并且只能用任务管理器关掉软件才行。我有做一个小模型,到抗滑桩验收模块提示结构不稳定,改变输入,怎么不提示是哪方面的问题。。。

如何使用GEO5设计桩板式挡墙

库仑产品库仑戚工 发表了文章 • 0 个评论 • 8600 次浏览 • 2017-09-08 16:23 • 来自相关话题

  本文主要说明采用桩板墙支挡边坡时GEO5中的设计流程。情况一  根据现场勘察情况,已探明有明显滑动面或软弱面,此时很容易判断边坡破坏模式为滑坡滑动破坏,则采用GEO5“土质边坡稳定分析”模块和“抗滑桩设计”模块进行设计。此时桩板墙受力模式为滑面以上桩后受滑坡剩余下滑力,滑面以上桩前受剩余抗滑力,滑面以下为嵌固段,桩土之间采用土弹簧模拟,如下图所示。  此时,只要按照抗滑桩设计流程进行设计即可,或者采用“土质边坡稳定分析”模块计算得到桩后滑坡推力和桩前滑体抗力后再采用“抗滑桩设计”模块进行设计即可。关于抗滑桩的设计流程,请参考《GEO5工程设计手册》中的:第十章:抗滑桩设计。  “抗滑桩设计”模块可以完成桩的变形、内力和配筋计算,关于板的计算,将在本文章的后面部分介绍。情况二  现场勘测不到滑动面,此时需要用GEO5“土质边坡稳定分析”模块、“深基坑支护结构分析”模块、“土压力计算”模块和“抗滑桩设计”模块分别考虑两种不同的破坏模式,即滑坡破坏模式或基坑破坏模式,比较二者计算结果,选择最不利的一种情况作为后续配筋验算指标。滑坡破坏模式的计算和情况一相同,基坑破坏模式则按照基坑进行计算,其受力模式如下图所示。  此时,采用“深基坑支护结构分析”模块按照基坑设计的流程进行设计即可。关于基坑的设计流程,请参考《GEO5工程设计手册》中的:第六章:单支点锚拉式排桩基坑支护分析  关于滑坡破坏模式和基坑破坏模式,其在配筋上有一点不同,需要注意:  滑坡破坏模式中采用剩余下滑力作为荷载,而剩余下滑力是在设计安全系数下计算得到的,也就是说剩余下滑力是荷载的设计值。例如设计安全系数取1.3,那么得到的剩余下滑力是已经考虑了安全系数1.3的设计值。因此,在进行配筋验算时,采用这种破坏模式计算得到的内力值为设计值,无需再单独考虑内力的分项系数。  基坑破坏模式中采用土压力作为荷载,土压力计算时并没有单独考虑安全系数,相当于安全系数为1,也就是说土压力是荷载的标准值。因此,在进行配筋验算时,采用这种破坏模式计算得到的内力值为标准值,需要单独考虑内力的分项系数。基坑规范中要求此分项系数不小于1.25。板的设计  桩板式挡墙采用的大部分均为预制板,通常情况下可不用单独验算,如果需要计算,按照下述方式手算即可。注:板的验算会在后续的GEO5“抗滑桩设计”和“深基坑支护结构分析”模块的更新中加入。(当前版本为GEO5 2017)  对于同一种类型的板,选择一跨内最低端的板下边缘水平荷载(土压力或剩余下滑力)作为该类型板上的荷载,如下图所示。根据铁路路基支挡结构规范(TB10025-2006),该荷载可以乘以0.7~0.8的折减系数。  确定作用在板上的荷载后,对于前置板(即板和桩采用钢筋链接),板和桩的连接处按照刚接处理,对于后置板(后插的预制板),板和钢筋的连接处按照铰接处理,如下图所示。  对于后置板,其最大弯矩和剪力计算如下(其中l为一跨的板长或桩的净距。):  对于前置板,其最大弯矩和剪力计算如下:  得到最大弯矩和剪力后,按照混凝土结构设计规范进行配筋验算即可。 查看全部
<p>  本文主要说明采用桩板墙支挡边坡时GEO5中的设计流程。</p><p><strong>情况一</strong></p><p>  根据现场勘察情况,已探明有明显滑动面或软弱面,此时很容易判断边坡破坏模式为滑坡滑动破坏,则采用GEO5“土质边坡稳定分析”模块和“抗滑桩设计”模块进行设计。此时桩板墙受力模式为滑面以上桩后受滑坡剩余下滑力,滑面以上桩前受剩余抗滑力,滑面以下为嵌固段,桩土之间采用土弹簧模拟,如下图所示。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1504858793758890.png" alt="blob.png"/></p><p>  此时,只要按照抗滑桩设计流程进行设计即可,或者采用“土质边坡稳定分析”模块计算得到桩后滑坡推力和桩前滑体抗力后再采用“抗滑桩设计”模块进行设计即可。关于抗滑桩的设计流程,请参考《GEO5工程设计手册》中的:<a href="/dochelp/1649" target="_blank" textvalue="第十章:抗滑桩设计">第十章:抗滑桩设计</a>。</p><p>  “抗滑桩设计”模块可以完成桩的变形、内力和配筋计算,关于板的计算,将在本文章的后面部分介绍。</p><p><strong>情况二</strong></p><p>  现场勘测不到滑动面,此时需要用GEO5“土质边坡稳定分析”模块、“深基坑支护结构分析”模块、“土压力计算”模块和“抗滑桩设计”模块分别考虑两种不同的破坏模式,即滑坡破坏模式或基坑破坏模式,比较二者计算结果,选择最不利的一种情况作为后续配筋验算指标。滑坡破坏模式的计算和情况一相同,基坑破坏模式则按照基坑进行计算,其受力模式如下图所示。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1504858813205417.png" alt="blob.png"/></p><p>  此时,采用“深基坑支护结构分析”模块按照基坑设计的流程进行设计即可。关于基坑的设计流程,请参考《GEO5工程设计手册》中的:<a href="/dochelp/80" target="_blank" textvalue="第六章:单支点锚拉式排桩基坑支护分析">第六章:单支点锚拉式排桩基坑支护分析</a></p><p>  关于滑坡破坏模式和基坑破坏模式,其在配筋上有一点不同,需要注意:</p><p>  滑坡破坏模式中采用剩余下滑力作为荷载,而剩余下滑力是在设计安全系数下计算得到的,也就是说剩余下滑力是荷载的设计值。例如设计安全系数取1.3,那么得到的剩余下滑力是已经考虑了安全系数1.3的设计值。因此,在进行配筋验算时,采用这种破坏模式计算得到的内力值为设计值,无需再单独考虑内力的分项系数。</p><p>  基坑破坏模式中采用土压力作为荷载,土压力计算时并没有单独考虑安全系数,相当于安全系数为1,也就是说土压力是荷载的标准值。因此,在进行配筋验算时,采用这种破坏模式计算得到的内力值为标准值,需要单独考虑内力的分项系数。基坑规范中要求此分项系数不小于1.25。</p><p><strong>板的设计</strong></p><p>  桩板式挡墙采用的大部分均为预制板,通常情况下可不用单独验算,如果需要计算,按照下述方式手算即可。</p><blockquote><p>注:板的验算会在后续的GEO5“抗滑桩设计”和“深基坑支护结构分析”模块的更新中加入。(当前版本为GEO5&nbsp;2017)</p></blockquote><p>  对于同一种类型的板,选择一跨内最低端的板下边缘水平荷载(土压力或剩余下滑力)作为该类型板上的荷载,如下图所示。根据铁路路基支挡结构规范(TB10025-2006),该荷载可以乘以0.7~0.8的折减系数。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1504858836361793.png" alt="blob.png"/></p><p>  确定作用在板上的荷载后,对于前置板(即板和桩采用钢筋链接),板和桩的连接处按照刚接处理,对于后置板(后插的预制板),板和钢筋的连接处按照铰接处理,如下图所示。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1504858852323806.png" alt="blob.png"/></p><p>  对于后置板,其最大弯矩和剪力计算如下(其中<em>l</em>为一跨的板长或桩的净距。):</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1504858882237047.png" alt="blob.png"/></p><p>  对于前置板,其最大弯矩和剪力计算如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1504858893584952.png" alt="blob.png"/></p><p>  得到最大弯矩和剪力后,按照混凝土结构设计规范进行配筋验算即可。</p><p><br/></p>

关于锚索预应力的问题

回答

岩土工程库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 1233 次浏览 • 2024-06-25 16:30 • 来自相关话题

geo5边坡毕肖普法表格在哪下载

回答

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 1396 次浏览 • 2024-05-07 11:12 • 来自相关话题

土质边坡稳定计算,挡土墙作为刚性材料,能按第2工况输入吗?

回答

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 1095 次浏览 • 2024-05-07 11:08 • 来自相关话题

用边坡开挖状态的最大剩余下滑力对应的滑面做锚索支护设计可以吗?

回答

岩土工程tangyuxi 回答了问题 • 2 人关注 • 3 个回答 • 3773 次浏览 • 2024-05-07 11:05 • 来自相关话题

GEO5计算双坡治理,能一个模型计算吗?

回答

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 989 次浏览 • 2024-04-02 09:52 • 来自相关话题

全埋式抗滑桩如何设置

回答

库仑产品杨帆 回答了问题 • 3 人关注 • 2 个回答 • 974 次浏览 • 2024-01-12 10:19 • 来自相关话题

抗滑桩桩底支承条件

回答

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 931 次浏览 • 2023-10-07 10:01 • 来自相关话题

爆破工况下边坡稳定性

回答

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 885 次浏览 • 2023-09-25 14:48 • 来自相关话题

库伦GEO5计算稳定时能否考虑冻胀情况?

回答

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 799 次浏览 • 2023-08-01 12:02 • 来自相关话题

从岩土有限元调用边坡稳定性模块失败

回答

岩土工程库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 837 次浏览 • 2023-08-01 12:01 • 来自相关话题

GEO5土质边坡稳定性分析中若边坡是上土下岩的混合模式是否可以计算其稳定性?

回答

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 922 次浏览 • 2023-07-10 09:27 • 来自相关话题

2023版GEO5土质边坡里的土层节理

回答

库仑产品南京库仑张工 回答了问题 • 2 人关注 • 1 个回答 • 961 次浏览 • 2023-06-19 17:50 • 来自相关话题

geo5能设计格构梁加锚杆支护吗?在哪个模块可以操作

回答

库仑产品杨帆 回答了问题 • 3 人关注 • 2 个回答 • 1244 次浏览 • 2023-04-23 11:18 • 来自相关话题

geo-5中抗滑桩设计模块中,软件对于滑面以上桩身内力是采用悬臂桩法进行计算的还是地基系数法

回答

库仑产品南京库仑张工 回答了问题 • 2 人关注 • 1 个回答 • 1083 次浏览 • 2023-02-20 09:34 • 来自相关话题

GEO5能计算钢管桩支护边坡整体稳定性吗?

回答

岩土工程库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 1355 次浏览 • 2022-10-08 10:10 • 来自相关话题

加筋土挡墙设计

回答

库仑产品南京库仑张工 回答了问题 • 2 人关注 • 1 个回答 • 1344 次浏览 • 2022-09-20 09:22 • 来自相关话题

关于MP法的一些疑问

回答

库仑产品库仑吴汶垣 回答了问题 • 2 人关注 • 1 个回答 • 1374 次浏览 • 2022-06-09 14:01 • 来自相关话题

请问土钉边坡支护设计中,面层必须是直立的吗,怎么调整坡度?

回答

岩土工程库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 1445 次浏览 • 2022-05-10 09:07 • 来自相关话题

geo5中如何像理正岩土一样设计锚杆自由段长度超过滑面1.5m,同时根据锚固力自动计算锚固段长度?

回答

岩土工程库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 1826 次浏览 • 2022-02-28 09:21 • 来自相关话题

剩余下滑力曲线在GEO5中的使用

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 276 次浏览 • 2024-11-06 10:14 • 来自相关话题

       不平衡推力方法(隐式&显式)是国内计算边坡和滑坡稳定性时常用的方法,在GEO5中,除了可以采用该方法对边坡稳定性进行计算,软件还可以给出沿滑动面的剩余下滑力传递曲线。部分工程师在使用时并不清楚怎么查看该曲线,也不明白其中原理,本文对此进行说明。1、如何在GEO5中查看剩余下滑力曲线       首先需要明确的是,不是所有计算方法都能得到该曲线。剩余下滑力实际是通过条块间条间力的传递而获得,所以用户必须使用考虑条间力的分析方法才能看到该曲线,最常用的就是不平衡推力方法,隐式和显式都可以,如果采用bishop法是看不到该曲线的,其他的严格条分法,例如M-P,简布法和斯宾塞法也都能获取该曲线。       当选择考虑条间力的方法计算之后,点击软件界面左侧面板中的齿轮按钮,勾选分析中的“剩余下滑力”和“数值”选项,那么就能在图形显示窗口中查看剩余下滑力曲线。2、剩余下滑力曲线的绘制原则       GEO5软件中剩余下滑力曲线绘制原理参考了《铁路路基支挡结构设计规范》中滑坡推力曲线的绘制方法。规范中的滑坡推力曲线       曲线范围从滑动面的剪入口开始一直到剪出口为止,分段数量等于条块数量,如果是圆弧滑动,在GEO5软件中默认分为20个条块。GEO5中绘制的剩余下滑力曲线有几点需要说明:①  软件绘制的是剩余下滑力曲线,并不是滑坡推力曲线,剩余下滑力和抗滑桩所受的滑坡推力之间还需要考虑所在条块滑面角度的影响;②  剩余下滑力曲线的形状和数值大小跟滑面位置、岩土材料参数、支护力的大小、设计安全系数取值等因素相关;③  当剪入口位置的条块自身稳定性大于设计安全系数时,该条块则无剩余下滑力,依此类推,直到出现条块稳定性小于设计安全系数时,剩余下滑力从正值绘制,也就是剪入口位置的条块剩余下滑力一定为非负值;④  当计算滑动面整体稳定性大于设计安全系数时,剪出口位置的剩余下滑力会为负值,这里并没归为0,是为了方便用户查看边坡的支护或者自身稳定有多大的余量。加了支护后的剩余下滑力曲线3、剩余下滑力曲线的应用(1)确定下滑段和阻滑段位置       最常见的剩余下滑力曲线就是先上升后下降的弧线,当遇到地形复杂,同时坡面叠加超载和支护结构的时候,曲线可能存在多个上升段和下降段,这里的上升段可以认为是下滑段,下降段可以认为是阻滑段。(2)确定桩后滑坡推力       当采用抗滑桩支挡时,桩后的滑坡推力大小为该桩设计位置条块的剩余下滑力乘以滑面倾角的余弦值。       除了滑坡推力,桩前实际还受到滑体抗力的作用,很多用户对于滑体抗力如何计算并不清楚,这里顺带做个说明。       以下图为例,这里对应着滑面绘制了4条曲线。曲线a是极限状态的传递曲线,特点是剪出口和剪入口位置力都为0,表征边坡实际状况,也就是曲线以边坡实际的稳定系数来绘制;曲线b为推力传递曲线,从剪入口开始到剪出口,以边坡设计安全系数绘制;曲线c为抗力传递曲线,从剪出口开始反向到剪入口,同样以边坡设计安全系数绘制;曲线d为推力和抗力在抗滑桩位置处的叠加曲线,其中T为滑坡推力,P就是滑体抗力,d曲线为抗滑桩刚好达到边坡稳定系数等于设计安全系数的支撑效果,但不一定意味着桩的极限状态。       根据曲线可以看出T,P的数值跟设桩位置相关,同时跟设计安全系数的取值相关,简单理解为1.35的设计安全系数会比1.2的设计安全系数得到的推力更大。而抗力是否也会随着设计安全系数提高而增大呢,分两种情况,当桩前块体仍然满足增大后的设计安全系数时,抗力则相应增大,当桩前块体达不到增大后的设计安全系数时,抗力不仅不会增大,而是直接为0,这就是用户在查看抗滑桩受力时遇到桩前为0的原因。(3)其他应用       除了通过剩余下滑力曲线区分抗滑段与阻滑段,确定滑坡推力之外,还可以通过曲线下降的斜率判断不同区域的抗滑效果,哪些区段采用削方减载效果会更好,抗滑桩设置于哪些地段效率更高。尤其是对于滑坡整治项目,可以充分利用下滑力曲线进行辅助分析。 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp;不平衡推力方法(隐式&amp;显式)是国内计算边坡和滑坡稳定性时常用的方法,在GEO5中,除了可以采用该方法对边坡稳定性进行计算,软件还可以给出沿滑动面的剩余下滑力传递曲线。部分工程师在使用时并不清楚怎么查看该曲线,也不明白其中原理,本文对此进行说明。</p><p>1、如何在GEO5中查看剩余下滑力曲线</p><p>&nbsp; &nbsp; &nbsp; &nbsp;首先需要明确的是,不是所有计算方法都能得到该曲线。剩余下滑力实际是通过条块间条间力的传递而获得,所以用户必须使用考虑条间力的分析方法才能看到该曲线,最常用的就是不平衡推力方法,隐式和显式都可以,如果采用bishop法是看不到该曲线的,其他的严格条分法,例如M-P,简布法和斯宾塞法也都能获取该曲线。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730858794347194.png" alt="image.png" width="504" height="324" style="width: 504px; height: 324px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;当选择考虑条间力的方法计算之后,点击软件界面左侧面板中的齿轮按钮,勾选分析中的“剩余下滑力”和“数值”选项,那么就能在图形显示窗口中查看剩余下滑力曲线。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730858828364736.png" alt="image.png"/></p><p>2、剩余下滑力曲线的绘制原则</p><p>&nbsp; &nbsp; &nbsp; &nbsp;GEO5软件中剩余下滑力曲线绘制原理参考了《铁路路基支挡结构设计规范》中滑坡推力曲线的绘制方法。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730859036672758.png" alt="image.png"/></p><p style="text-align: center;">规范中的滑坡推力曲线</p><p>&nbsp; &nbsp; &nbsp; &nbsp;曲线范围从滑动面的剪入口开始一直到剪出口为止,分段数量等于条块数量,如果是圆弧滑动,在GEO5软件中默认分为20个条块。GEO5中绘制的剩余下滑力曲线有几点需要说明:</p><p>①&nbsp; 软件绘制的是剩余下滑力曲线,并不是滑坡推力曲线,剩余下滑力和抗滑桩所受的滑坡推力之间还需要考虑所在条块滑面角度的影响;</p><p>②&nbsp; 剩余下滑力曲线的形状和数值大小跟滑面位置、岩土材料参数、支护力的大小、设计安全系数取值等因素相关;</p><p>③&nbsp; 当剪入口位置的条块自身稳定性大于设计安全系数时,该条块则无剩余下滑力,依此类推,直到出现条块稳定性小于设计安全系数时,剩余下滑力从正值绘制,也就是剪入口位置的条块剩余下滑力一定为非负值;</p><p>④&nbsp; 当计算滑动面整体稳定性大于设计安全系数时,剪出口位置的剩余下滑力会为负值,这里并没归为0,是为了方便用户查看边坡的支护或者自身稳定有多大的余量。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730859156395858.png" alt="image.png"/></p><p style="text-align: center;">加了支护后的剩余下滑力曲线</p><p>3、剩余下滑力曲线的应用</p><p>(1)确定下滑段和阻滑段位置</p><p>&nbsp; &nbsp; &nbsp; &nbsp;最常见的剩余下滑力曲线就是先上升后下降的弧线,当遇到地形复杂,同时坡面叠加超载和支护结构的时候,曲线可能存在多个上升段和下降段,这里的上升段可以认为是下滑段,下降段可以认为是阻滑段。</p><p>(2)确定桩后滑坡推力</p><p>&nbsp; &nbsp; &nbsp; &nbsp;当采用抗滑桩支挡时,桩后的滑坡推力大小为该桩设计位置条块的剩余下滑力乘以滑面倾角的余弦值。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;除了滑坡推力,桩前实际还受到滑体抗力的作用,很多用户对于滑体抗力如何计算并不清楚,这里顺带做个说明。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;以下图为例,这里对应着滑面绘制了4条曲线。曲线a是极限状态的传递曲线,特点是剪出口和剪入口位置力都为0,表征边坡实际状况,也就是曲线以边坡实际的稳定系数来绘制;曲线b为推力传递曲线,从剪入口开始到剪出口,以边坡设计安全系数绘制;曲线c为抗力传递曲线,从剪出口开始反向到剪入口,同样以边坡设计安全系数绘制;曲线d为推力和抗力在抗滑桩位置处的叠加曲线,其中T为滑坡推力,P就是滑体抗力,d曲线为抗滑桩刚好达到边坡稳定系数等于设计安全系数的支撑效果,但不一定意味着桩的极限状态。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730859231836626.png" alt="image.png" width="432" height="421" style="width: 432px; height: 421px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据曲线可以看出T,P的数值跟设桩位置相关,同时跟设计安全系数的取值相关,简单理解为1.35的设计安全系数会比1.2的设计安全系数得到的推力更大。而抗力是否也会随着设计安全系数提高而增大呢,分两种情况,当桩前块体仍然满足增大后的设计安全系数时,抗力则相应增大,当桩前块体达不到增大后的设计安全系数时,抗力不仅不会增大,而是直接为0,这就是用户在查看抗滑桩受力时遇到桩前为0的原因。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1730859262502300.png" alt="image.png"/></p><p>(3)其他应用</p><p>&nbsp; &nbsp; &nbsp; &nbsp;除了通过剩余下滑力曲线区分抗滑段与阻滑段,确定滑坡推力之外,还可以通过曲线下降的斜率判断不同区域的抗滑效果,哪些区段采用削方减载效果会更好,抗滑桩设置于哪些地段效率更高。尤其是对于滑坡整治项目,可以充分利用下滑力曲线进行辅助分析。</p>

GEO5某矿渣边坡支护设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 792 次浏览 • 2024-08-22 14:18 • 来自相关话题

1 项目背景       某矿区地下水污染综合防治工程受甲方委托在矿区勘查工作和收集周边工程建设勘查资料的基础上,遵循地质灾害防治的基本原则,对矿区矿渣堆整形、矿渣堆及堆体两侧坡面护坡、拦渣坝、截排水沟、不稳定边坡支护、危岩清除等防治工程从安全有效性、技术可行性、经济合理性进行论证,提出具有针对性、系统性的最优综合防治工程方案。2 工程地质条件       针对矿区矿渣堆边坡开展调勘查,共划分8个不稳定斜坡,分别进行坡面稳定性分析评价,通过钻探取样及现场大重度试验及现场2处已经滑移边坡坡面反演综合确定不稳定斜坡物质组成成分为:       ①素填土(角砾为主):分布于矿区坡面中下部,参数取值天然状态:重度=19.0kN/m3,C=6.0kPa,φ=28.00°,饱和状态:重度=19.6kN/m3,C=0.5kPa,φ=21.00°;       ②素填土(碎石为主):分布于矿区坡面上部,参数取值天然状态:重度=19.2kN/m3,C=2.0kPa,φ=31.00°,饱和状态:重度=19.8kN/m3,C=1.2kPa,φ=27.00°;       ③强风化片岩:分布于矿渣堆下部,厚2-8m,天然单轴抗压强度14MPa,饱和单轴抗压强度10.4MPa;       ④中风化片岩:分布于强风化基岩下,分布于3-10m以下,天然单轴抗压强度32.62MPa,饱和单轴抗压强度16.54MPa;       其岩土体的渗透系数通过钻孔压水试验及现场双环实验确定①层素填土地表矿渣渗透系数值0.14~0.22cm/s,平均值K=0.18cm/s,为强透水性;①层素填土地表覆土渗透系数值2.75×10-5~4.90×10-5cm/s,平均值K=3.83×10-5m/d,为弱透水性;③-1强风化片岩渗透系数值1.29×10-3~7.02×10-3cm/s,平均值K=4.24×10-3cm/s(约72Lu),为中等透水性;③-2中风化渗透系数值2.29~9.38×10-5cm/s,平均值5.44×10-5(约4.6Lu),为弱透水性。       综合调勘查结果及周边1:5000水文地质调查成果,地下水均为大气降雨补给,主要以矿渣堆素填土及坡面表层粉质粘土的孔隙潜水存在,局部受地形切割出露为下降泉径流;下部基岩裂隙水弱含水性,径流较近,因此综合地下水污染防治效果,本次主要采取对矿渣堆整形加封闭矿渣堆减少降雨入渗为主的方法治理。3 斜坡稳定性计算及支护设计       根据不稳定斜坡变形现状,及区内水文地形等特点,分别对不稳定斜坡天然、地震和暴雨工况进行计算。1号不稳定斜坡天然工况计算1号不稳定斜坡地震工况计算1号不稳定斜坡暴雨工况计算       对所有8个不稳定斜坡均进行计算后,所有斜坡均处于基本稳定到欠稳定状态,需要进行支护设计。       本次堆积矿渣高度在5m-15m,且矿渣堆主要为强风化片岩,使用加筋土挡墙工程可以有效利用矿渣,且较为经济。加筋土挡墙可以分级台阶做坡度,在面层开展防渗措施。因此本次支护方案采用加筋土挡墙设计。       考虑到加筋土墙的土工格栅的蠕变、耐久、安装等损失,最终加筋土墙采用双向聚酯(PET)的土工格栅的材料,防腐等级在2-13,它的质控出厂抗拉强度可达400kN/m。加筋土挡墙设计加筋后整体稳定性分析4 总结       本次项目主要是基于地下水污染防治防渗目的开展的边坡整形消纳支挡工程设计,主要基于前期调查,确定污染来源主要为大气降水淋滤矿渣造成的水污染,未发现有深层基岩泉水出露的条件下,开展边坡稳定性分析,在此基础上进行加筋土挡墙设计。       GEO5边坡稳定系分析模块可以一个文件分析多种工况问题,减少重复建模操作,加筋土挡墙设计模块支持多级台阶设置,对本设计方案提供了计算支撑。 查看全部
<p><strong>1 项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;某矿区地下水污染综合防治工程受甲方委托在矿区勘查工作和收集周边工程建设勘查资料的基础上,遵循地质灾害防治的基本原则,对矿区矿渣堆整形、矿渣堆及堆体两侧坡面护坡、拦渣坝、截排水沟、不稳定边坡支护、危岩清除等防治工程从安全有效性、技术可行性、经济合理性进行论证,提出具有针对性、系统性的最优综合防治工程方案。</p><p><strong>2 工程地质条件</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;针对矿区矿渣堆边坡开展调勘查,共划分8个不稳定斜坡,分别进行坡面稳定性分析评价,通过钻探取样及现场大重度试验及现场2处已经滑移边坡坡面反演综合确定不稳定斜坡物质组成成分为:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①素填土(角砾为主):分布于矿区坡面中下部,参数取值天然状态:重度=19.0kN/m3,C=6.0kPa,φ=28.00°,饱和状态:重度=19.6kN/m3,C=0.5kPa,φ=21.00°;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②素填土(碎石为主):分布于矿区坡面上部,参数取值天然状态:重度=19.2kN/m3,C=2.0kPa,φ=31.00°,饱和状态:重度=19.8kN/m3,C=1.2kPa,φ=27.00°;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;③强风化片岩:分布于矿渣堆下部,厚2-8m,天然单轴抗压强度14MPa,饱和单轴抗压强度10.4MPa;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;④中风化片岩:分布于强风化基岩下,分布于3-10m以下,天然单轴抗压强度32.62MPa,饱和单轴抗压强度16.54MPa;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;其岩土体的渗透系数通过钻孔压水试验及现场双环实验确定①层素填土地表矿渣渗透系数值0.14~0.22cm/s,平均值K=0.18cm/s,为强透水性;①层素填土地表覆土渗透系数值2.75×10-5~4.90×10-5cm/s,平均值K=3.83×10-5m/d,为弱透水性;③-1强风化片岩渗透系数值1.29×10-3~7.02×10-3cm/s,平均值K=4.24×10-3cm/s(约72Lu),为中等透水性;③-2中风化渗透系数值2.29~9.38×10-5cm/s,平均值5.44×10-5(约4.6Lu),为弱透水性。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;综合调勘查结果及周边1:5000水文地质调查成果,地下水均为大气降雨补给,主要以矿渣堆素填土及坡面表层粉质粘土的孔隙潜水存在,局部受地形切割出露为下降泉径流;下部基岩裂隙水弱含水性,径流较近,因此综合地下水污染防治效果,本次主要采取对矿渣堆整形加封闭矿渣堆减少降雨入渗为主的方法治理。</p><p><strong>3 斜坡稳定性计算及支护设计</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据不稳定斜坡变形现状,及区内水文地形等特点,分别对不稳定斜坡天然、地震和暴雨工况进行计算。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307340709472.png" alt="image.png"/></p><p style="text-align: center;">1号不稳定斜坡天然工况计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307363530498.png" alt="image.png"/></p><p style="text-align: center;">1号不稳定斜坡地震工况计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307383469712.png" alt="image.png"/></p><p style="text-align: center;">1号不稳定斜坡暴雨工况计算</p><p>&nbsp; &nbsp; &nbsp; &nbsp;对所有8个不稳定斜坡均进行计算后,所有斜坡均处于基本稳定到欠稳定状态,需要进行支护设计。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次堆积矿渣高度在5m-15m,且矿渣堆主要为强风化片岩,使用加筋土挡墙工程可以有效利用矿渣,且较为经济。加筋土挡墙可以分级台阶做坡度,在面层开展防渗措施。因此本次支护方案采用加筋土挡墙设计。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;考虑到加筋土墙的土工格栅的蠕变、耐久、安装等损失,最终加筋土墙采用双向聚酯(PET)的土工格栅的材料,防腐等级在2-13,它的质控出厂抗拉强度可达400kN/m。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307433901610.png" alt="image.png"/></p><p style="text-align: center;">加筋土挡墙设计</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724307454719014.png" alt="image.png"/></p><p style="text-align: center;">加筋后整体稳定性分析</p><p><strong>4 总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次项目主要是基于地下水污染防治防渗目的开展的边坡整形消纳支挡工程设计,主要基于前期调查,确定污染来源主要为大气降水淋滤矿渣造成的水污染,未发现有深层基岩泉水出露的条件下,开展边坡稳定性分析,在此基础上进行加筋土挡墙设计。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;GEO5边坡稳定系分析模块可以一个文件分析多种工况问题,减少重复建模操作,加筋土挡墙设计模块支持多级台阶设置,对本设计方案提供了计算支撑。</p>

GEO5某滑雪小镇高陡填土边坡及抗滑桩工程设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 821 次浏览 • 2024-08-22 10:41 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、抗滑桩设计1 项目背景       某滑雪场坐落于“中国滑雪之乡”吉林省通化市,海拔约980米,依山傍水而建的16公里登山步道连接某国家森林公园景区,山体落差约568米。区域年冰雪期逾150天,平均积雪厚度可达一米左右,雪质优良,可同时容纳1000人滑雪。       本次新建滑雪场度假区滑雪小镇位于滑雪场东侧临近的山坡地段,项目整体包括7栋公寓、别墅区、造雪机房和车库等。其中C4座位于项目东南侧山坡,按项目规划,在紧邻C4座东侧需要大量填土,预计新填土及原地表填土合计高度超过15米,而边坡东侧下部临近河道边坡,填土后整体形成了一个大型的高陡边坡,是该项目边坡工程中最危险的部分。项目整体及C4座周边填土边坡情况如下图所示。项目场地周边效果图2 工程地质条件       拟建场区地貌单元为坡积地貌,地势变化较大。孔口高程最大值为454.90m,最小值为416.09m,最大高差38.81m。       勘察深度内,场区地下水属第四系潜水,初见水位埋深自然地面以下1.70~4.40m,稳定水位埋深自然地面以下1.50~4.20m,稳定水位标高为411.89~449.22m,勘察区内地形为山坡,地表水不发育,地下水补给来源主要为大气降雨和雪水融化,降水量比较充沛。山区覆盖层比较薄,有利于降水渗入补给。       由于地势较高,汇水面积小,地形坡度较大,覆盖层不厚,因此地表水径流条件良好,并在短时间内,由沟谷泄走。        地层岩性由上至下分10层,表层土为第四系素填土、粉质粘土含角砾、粗砂、圆砾、卵石,下伏基岩为:老岭群珍珠门组大理岩,根据勘察区岩体露头产状,倾向135°,倾角63°。现分层描述如下:       第①层 素填土:暗黄色、黑色,湿,松散,主要由碎石、粘性土等回填,该层在场区内分布不连续,层厚0.40~3.00m。       第②层 腐殖土:黑色,湿,松散,该层在场区部分地段见到,层厚0.30~1.90m。       第③层 粉质粘土含角砾:暗黄色,湿~饱和,可塑,角砾含量20%左右,该层在场区内部分地段缺失,层厚0.40~3.40m。       第④层 粗砂:暗黄色,湿,稍密,粒径大于0.5mm的颗粒质量超过总质量的50%以上,颗分级配好,分选性差,该层在场区内部分地段见到,层厚0.80~2.10m。       第⑤层 角砾:暗黄色,湿~饱和,稍密,粒径大于2mm的颗粒质量占总质量的50%以上,呈棱角状,一般粒径2~5mm,最大粒径10mm,由粘性土充填,该层在场区内分布不连续,层厚1.60~2.70m。       第⑥层 碎石:暗黄色,湿,稍密,粒径大于20mm的颗粒质量占总质量的50%以上,呈棱角状,一般粒径20~50mm,最大粒径70mm,由粘性土充填,该层在场区内部分地段见到,层厚0.50~3.10m。       第⑦层 卵石:暗黄色,湿~饱和,稍密,粒径大于20mm的颗粒占总质量的50%以上,呈亚圆状,一般粒径20~60mm,最大粒径120mm,由砂类土充填,该层在场区内分布不连续,层厚0.30~4.60m。       第⑧层 大理岩:全风化,灰白色,经风化作用,结构被破坏,见原岩成份,该层在场区内分布不连续,层厚0.40~0.90m。       第⑨层 大理岩:强风化,灰白色,隐晶质变晶结构,块状构造,为较软岩,较破碎,岩芯呈碎块状,岩体基本质量等级为Ⅳ级,层厚0.20~2.10m。       第⑩层 大理岩:中风化,灰白色,隐晶质变晶结构,块状构造,为较软岩,较完整,岩芯呈短柱状及块状,岩体基本质量等级为Ⅳ级,层厚5.00~20.40m。场地7-7工程地质剖面图3 支挡结构设计3.1设计参数       (1)X1-X2-X3-X4剖面:采用直径1200mm抗滑桩,间距2.4m,桩长18m, 桩端进入中风化大理岩不小于4m,兼做上部悬臂式挡土墙的桩基础,悬臂式挡土墙高3m;       (2)Y1-Y2-Y3-Y4-Y5剖面:采用直径1400mm抗滑桩,间距2.4m,桩长11m, 桩端进入中风化大理岩不小于4m,兼做上部扶壁式挡土墙的桩基础,扶壁式挡土墙高5m;       (3)支护桩及悬臂式、扶壁式挡土墙采用C30混凝土,主筋采用HRB400级钢筋,箍筋可采用HPB335级钢筋;主筋外侧混凝土保护层厚度50mm;       (4)锚索采用3-7∅5(∅=15.2)钢绞线为筋体,成孔直径不小于150mm,注浆材料为素水泥浆,水灰比0.8:1,水泥采用42.5级普通硅酸盐水泥,应按规范要求保证锚索施工质量;       (5)锚索承载力标准值Nk=150kPa,预拉力为Nk的140%,持荷5分钟后锁定,锁定力为Nk的85%;       (6)填土要求:上部填土必须分层夯实,分层厚度不大于400mm,压实系数不小于0.95,并严格按照图中尺寸进行填筑,严禁超挖超填;回填材料为砂类土或黏土混以碎石,严禁使用软黏土、膨胀性土、淤泥质土、耕植土或冻土作为回填土;       (7)上部挡墙后地面横坡坡度大于1:6时,应在进行地面粗糙后再填土;       (8)锚索及锚头的防腐处应符合《建筑边坡工程技术规范》GB50330-2013永久性锚杆的防腐蚀处理的规定。典型设计剖面3.2计算分析成果(1)天然工况计算(2)地震工况计算4 总结       本项目整体建于山体边坡上,涉及各种边坡形式较多,也采取了不同的支护手段,采用库仑GEO5岩土分析软件,可以实现多工况在一个文件当中进行计算,方便快捷,计算成果为设计提供了支撑。       项目于2021年初进行设计,并陆续施工,至2022年完工,当时正处于新冠疫情期间,未能采集到施工过程的影像,后期据业主反映建成后效果很好,且与度假区整体的景观规划较协调。 查看全部
<p>使用模块:GEO5土质边坡稳定性分析、抗滑桩设计</p><p><strong>1 项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;某滑雪场坐落于“中国滑雪之乡”吉林省通化市,海拔约980米,依山傍水而建的16公里登山步道连接某国家森林公园景区,山体落差约568米。区域年冰雪期逾150天,平均积雪厚度可达一米左右,雪质优良,可同时容纳1000人滑雪。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次新建滑雪场度假区滑雪小镇位于滑雪场东侧临近的山坡地段,项目整体包括7栋公寓、别墅区、造雪机房和车库等。其中C4座位于项目东南侧山坡,按项目规划,在紧邻C4座东侧需要大量填土,预计新填土及原地表填土合计高度超过15米,而边坡东侧下部临近河道边坡,填土后整体形成了一个大型的高陡边坡,是该项目边坡工程中最危险的部分。项目整体及C4座周边填土边坡情况如下图所示。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294173959878.png" alt="image.png"/></p><p style="text-align: center;">项目场地周边效果图</p><p><strong>2 工程地质条件</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;拟建场区地貌单元为坡积地貌,地势变化较大。孔口高程最大值为454.90m,最小值为416.09m,最大高差38.81m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;勘察深度内,场区地下水属第四系潜水,初见水位埋深自然地面以下1.70~4.40m,稳定水位埋深自然地面以下1.50~4.20m,稳定水位标高为411.89~449.22m,勘察区内地形为山坡,地表水不发育,地下水补给来源主要为大气降雨和雪水融化,降水量比较充沛。山区覆盖层比较薄,有利于降水渗入补给。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;由于地势较高,汇水面积小,地形坡度较大,覆盖层不厚,因此地表水径流条件良好,并在短时间内,由沟谷泄走。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 地层岩性由上至下分10层,表层土为第四系素填土、粉质粘土含角砾、粗砂、圆砾、卵石,下伏基岩为:老岭群珍珠门组大理岩,根据勘察区岩体露头产状,倾向135°,倾角63°。现分层描述如下:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第①层 素填土:暗黄色、黑色,湿,松散,主要由碎石、粘性土等回填,该层在场区内分布不连续,层厚0.40~3.00m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第②层 腐殖土:黑色,湿,松散,该层在场区部分地段见到,层厚0.30~1.90m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第③层 粉质粘土含角砾:暗黄色,湿~饱和,可塑,角砾含量20%左右,该层在场区内部分地段缺失,层厚0.40~3.40m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第④层 粗砂:暗黄色,湿,稍密,粒径大于0.5mm的颗粒质量超过总质量的50%以上,颗分级配好,分选性差,该层在场区内部分地段见到,层厚0.80~2.10m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑤层 角砾:暗黄色,湿~饱和,稍密,粒径大于2mm的颗粒质量占总质量的50%以上,呈棱角状,一般粒径2~5mm,最大粒径10mm,由粘性土充填,该层在场区内分布不连续,层厚1.60~2.70m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑥层 碎石:暗黄色,湿,稍密,粒径大于20mm的颗粒质量占总质量的50%以上,呈棱角状,一般粒径20~50mm,最大粒径70mm,由粘性土充填,该层在场区内部分地段见到,层厚0.50~3.10m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑦层 卵石:暗黄色,湿~饱和,稍密,粒径大于20mm的颗粒占总质量的50%以上,呈亚圆状,一般粒径20~60mm,最大粒径120mm,由砂类土充填,该层在场区内分布不连续,层厚0.30~4.60m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑧层 大理岩:全风化,灰白色,经风化作用,结构被破坏,见原岩成份,该层在场区内分布不连续,层厚0.40~0.90m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑨层 大理岩:强风化,灰白色,隐晶质变晶结构,块状构造,为较软岩,较破碎,岩芯呈碎块状,岩体基本质量等级为Ⅳ级,层厚0.20~2.10m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第⑩层 大理岩:中风化,灰白色,隐晶质变晶结构,块状构造,为较软岩,较完整,岩芯呈短柱状及块状,岩体基本质量等级为Ⅳ级,层厚5.00~20.40m。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294258606780.png" alt="image.png"/></p><p style="text-align: center;">场地7-7工程地质剖面图</p><p><strong>3 支挡结构设计</strong></p><p>3.1设计参数</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(1)X1-X2-X3-X4剖面:采用直径1200mm抗滑桩,间距2.4m,桩长18m, 桩端进入中风化大理岩不小于4m,兼做上部悬臂式挡土墙的桩基础,悬臂式挡土墙高3m;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(2)Y1-Y2-Y3-Y4-Y5剖面:采用直径1400mm抗滑桩,间距2.4m,桩长11m, 桩端进入中风化大理岩不小于4m,兼做上部扶壁式挡土墙的桩基础,扶壁式挡土墙高5m;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(3)支护桩及悬臂式、扶壁式挡土墙采用C30混凝土,主筋采用HRB400级钢筋,箍筋可采用HPB335级钢筋;主筋外侧混凝土保护层厚度50mm;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(4)锚索采用3-7∅5(∅=15.2)钢绞线为筋体,成孔直径不小于150mm,注浆材料为素水泥浆,水灰比0.8:1,水泥采用42.5级普通硅酸盐水泥,应按规范要求保证锚索施工质量;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(5)锚索承载力标准值Nk=150kPa,预拉力为Nk的140%,持荷5分钟后锁定,锁定力为Nk的85%;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(6)填土要求:上部填土必须分层夯实,分层厚度不大于400mm,压实系数不小于0.95,并严格按照图中尺寸进行填筑,严禁超挖超填;回填材料为砂类土或黏土混以碎石,严禁使用软黏土、膨胀性土、淤泥质土、耕植土或冻土作为回填土;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(7)上部挡墙后地面横坡坡度大于1:6时,应在进行地面粗糙后再填土;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;(8)锚索及锚头的防腐处应符合《建筑边坡工程技术规范》GB50330-2013永久性锚杆的防腐蚀处理的规定。</p><p style="text-align: center;"><strong><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294336596049.png" alt="image.png"/></strong></p><p style="text-align: center;">典型设计剖面</p><p>3.2计算分析成果</p><p>(1)天然工况计算</p><p style="text-align: center;"><strong><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294366973070.png" alt="image.png"/></strong><br/></p><p style="text-align: center;"><strong><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294379804812.png" alt="image.png"/></strong></p><p>(2)地震工况计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294399993421.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724294414892184.png" alt="image.png"/></p><p><strong>4 总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本项目整体建于山体边坡上,涉及各种边坡形式较多,也采取了不同的支护手段,采用库仑GEO5岩土分析软件,可以实现多工况在一个文件当中进行计算,方便快捷,计算成果为设计提供了支撑。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;项目于2021年初进行设计,并陆续施工,至2022年完工,当时正处于新冠疫情期间,未能采集到施工过程的影像,后期据业主反映建成后效果很好,且与度假区整体的景观规划较协调。</p>

GEO5某水库管理营地边坡支护结构设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 758 次浏览 • 2024-08-22 10:34 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、抗滑桩设计、扶壁式挡土墙设计、重力式挡土墙设计1 项目背景       某水库位于金沙江左岸某二级支流中上游。水库为III等中型工程,工程任务为农业灌溉,城乡供水等综合利用。水库正常蓄水位1971.0m,设计洪水位1971.02m,校核洪水位1971.48m。水库总库容5113万m3,兴利库容4446万m3。工程由水库枢纽和灌区工程两部分组成,其中:水库枢纽包括大坝(粘土心墙石渣坝)、溢洪道、放空(导流)隧洞、取水隧洞等;灌区工程包括1条干渠和4条支渠。       工程场地库坝区未来50年超越概率10%的基岩水平峰值加速度为0.121g,相应地震烈度为Ⅶ度。       根据《水利水电工程合理使用年限及耐久性设计规范》(SL654-2014)表 3.0.2确定,对综合利用的水利水电工程,工程合理使用年限应按其中最高年限确定。该水库工程等别为Ⅲ等,工程规模为中型,确定工程合理使用年限为50年。       水库配套管理营地工程区位于右岸,场地现状为斜坡地段。场地地面高程为 1993m~2017m,最大高程为 22m,自然边坡坡度为 15°~20°,局部较陡, 最大约 30°。因处于斜坡地带,需对营地周边边坡进行支护结构设计。管理营地区域位置2 工程地质条件       根据工程地质测绘及勘探揭示,场地覆盖层主要为第四系残坡积形成的(Q4el+dl) 含孤块碎石土、含碎砾石粉质黏土,下伏基岩为白垩系下统粉砂质泥岩,各岩土层地质特征自上而下描述如下:(1)第四系残坡积层(Q4el+dl)       ①1 含孤块碎石土:紫红色,主要为孤块石, 原岩为粉砂质泥岩,呈碎块-柱状,碎块大小 2-6cm,柱长 5cm-25cm,含量 60%-70%,中间夹少量粉质黏土。厚度 4.6m~6.5m。       ①2 含碎砾石粉质黏土: 褐色,稍湿~干燥,松散~稍密,可塑状,碎石呈棱角-次棱角状,大小1-5cm,含量约 20%~30%,原岩为粉砂质泥岩。厚度 1.5m~7m。(2) 白垩系下统基岩       ②粉砂质泥岩:紫红色、青灰色,湿,成分以粘土矿物为主,泥质结构,薄层~中厚层状构造。       按其风化程度的不同,粉砂质泥岩可分为以下三个亚层:       ②1 强风化粉砂质泥岩: 强卸荷,岩体强烈卸荷松弛,普遍夹泥, 裂隙发育,遇水易崩解,性软,岩芯呈散体状结构,碎块大小 3cm~30cm。 厚度 1.5m~12m。       ②2 中风化粉砂质泥岩:岩体结构部分破坏,层理较为清晰,性脆,断口不平整,岩芯呈短柱状及柱状,较完整。 厚度 3.2m ~12m。       ②3 微新风化粉砂质泥岩:岩体结构基本未变,仅节理面有少量锈染,有少量风化裂隙,岩芯呈柱状及长柱状,较完整,本次未揭穿。场地岩土体物理力学参数建议值3 边坡支挡结构设计       营地后边坡采用抗滑桩结合逆作法锚拉式重力挡墙工艺,营地前缘边坡采用扶壁式挡墙填方施工,边坡开挖施工应严格按照从上至下刷坡,严禁未刷坡擅自开挖坡脚,采用动态信息化施工方法,做好施工期监测保证施工期安全。3.1边坡安全等级       边坡、挡土墙结构设计工作年限为50年;1#抗滑桩结合挡墙支护的边坡安全等级为以及一级,结构重要性系数为1.1,2#挡墙边坡安全等级为二级,结构重要性系数为1.0,3#挡墙边坡安全等级为一级,结构重要性系数为1.1。       持久工况挡墙抗滑移稳定系数为1.3,抗倾覆稳定系数为1.6;地震工况挡墙抗滑移稳定系数为1.1,抗倾覆稳定系数为1.3。       根据《建筑边坡工程技术规范》(GB50330~2013)要求,营地后边坡安全等级取一级,一般工况边坡稳定安全系数取1.35,地震工况取1.15。营地前缘填方边坡安全等级取二级,一般工况边坡稳定安全系数取1.30,地震工况取1.10。3.2典型断面设计3.3计算分析成果(1)抗滑桩支挡边坡设计(2)重力式挡墙支护设计(3)扶壁式挡墙支挡结构设计4 总结       本项目属于斜坡场地周边边坡支护设计,根据不同位置地质条件及斜坡高度,采取了不同的支护措施。       利用南京库仑GEO5岩土分析软件,可以快速建立多种挡墙类型及抗滑桩支挡结构,便于方案对比分析,多模块可以联合使用,省去重复建模时间,提高了项目设计效率。 查看全部
<p>使用模块:GEO5土质边坡稳定性分析、抗滑桩设计、扶壁式挡土墙设计、重力式挡土墙设计</p><p><strong>1 项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;某水库位于金沙江左岸某二级支流中上游。水库为III等中型工程,工程任务为农业灌溉,城乡供水等综合利用。水库正常蓄水位1971.0m,设计洪水位1971.02m,校核洪水位1971.48m。水库总库容5113万m3,兴利库容4446万m3。工程由水库枢纽和灌区工程两部分组成,其中:水库枢纽包括大坝(粘土心墙石渣坝)、溢洪道、放空(导流)隧洞、取水隧洞等;灌区工程包括1条干渠和4条支渠。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;工程场地库坝区未来50年超越概率10%的基岩水平峰值加速度为0.121g,相应地震烈度为Ⅶ度。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据《水利水电工程合理使用年限及耐久性设计规范》(SL654-2014)表 3.0.2确定,对综合利用的水利水电工程,工程合理使用年限应按其中最高年限确定。该水库工程等别为Ⅲ等,工程规模为中型,确定工程合理使用年限为50年。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;水库配套管理营地工程区位于右岸,场地现状为斜坡地段。场地地面高程为 1993m~2017m,最大高程为 22m,自然边坡坡度为 15°~20°,局部较陡, 最大约 30°。因处于斜坡地带,需对营地周边边坡进行支护结构设计。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293414348507.png" alt="image.png"/></p><p style="text-align: center;">管理营地区域位置</p><p><strong>2 工程地质条件</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据工程地质测绘及勘探揭示,场地覆盖层主要为第四系残坡积形成的(Q<sub>4</sub><sup>el+dl</sup>) 含孤块碎石土、含碎砾石粉质黏土,下伏基岩为白垩系下统粉砂质泥岩,各岩土层地质特征自上而下描述如下:</p><p>(1)第四系残坡积层(Q<sub>4</sub><sup>el+dl</sup>)</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①<sub>1</sub> 含孤块碎石土:紫红色,主要为孤块石, 原岩为粉砂质泥岩,呈碎块-柱状,碎块大小 2-6cm,柱长 5cm-25cm,含量 60%-70%,中间夹少量粉质黏土。厚度 4.6m~6.5m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①<sub>2</sub> 含碎砾石粉质黏土: 褐色,稍湿~干燥,松散~稍密,可塑状,碎石呈棱角-次棱角状,大小1-5cm,含量约 20%~30%,原岩为粉砂质泥岩。厚度 1.5m~7m。</p><p>(2) 白垩系下统基岩</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②粉砂质泥岩:紫红色、青灰色,湿,成分以粘土矿物为主,泥质结构,薄层~中厚层状构造。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;按其风化程度的不同,粉砂质泥岩可分为以下三个亚层:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②<sub>1</sub> 强风化粉砂质泥岩: 强卸荷,岩体强烈卸荷松弛,普遍夹泥, 裂隙发育,遇水易崩解,性软,岩芯呈散体状结构,碎块大小 3cm~30cm。 厚度 1.5m~12m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②<sub>2</sub> 中风化粉砂质泥岩:岩体结构部分破坏,层理较为清晰,性脆,断口不平整,岩芯呈短柱状及柱状,较完整。 厚度 3.2m ~12m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;②<sub>3</sub> 微新风化粉砂质泥岩:岩体结构基本未变,仅节理面有少量锈染,有少量风化裂隙,岩芯呈柱状及长柱状,较完整,本次未揭穿。</p><p style="text-align: center;">场地岩土体物理力学参数建议值</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293556747125.png" alt="image.png"/></p><p><strong>3 边坡支挡结构设计</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;营地后边坡采用抗滑桩结合逆作法锚拉式重力挡墙工艺,营地前缘边坡采用扶壁式挡墙填方施工,边坡开挖施工应严格按照从上至下刷坡,严禁未刷坡擅自开挖坡脚,采用动态信息化施工方法,做好施工期监测保证施工期安全。</p><p>3.1边坡安全等级</p><p>&nbsp; &nbsp; &nbsp; &nbsp;边坡、挡土墙结构设计工作年限为50年;1#抗滑桩结合挡墙支护的边坡安全等级为以及一级,结构重要性系数为1.1,2#挡墙边坡安全等级为二级,结构重要性系数为1.0,3#挡墙边坡安全等级为一级,结构重要性系数为1.1。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;持久工况挡墙抗滑移稳定系数为1.3,抗倾覆稳定系数为1.6;地震工况挡墙抗滑移稳定系数为1.1,抗倾覆稳定系数为1.3。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据《建筑边坡工程技术规范》(GB50330~2013)要求,营地后边坡安全等级取一级,一般工况边坡稳定安全系数取1.35,地震工况取1.15。营地前缘填方边坡安全等级取二级,一般工况边坡稳定安全系数取1.30,地震工况取1.10。</p><p>3.2典型断面设计</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293613580210.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293632403706.png" alt="image.png"/></p><p>3.3计算分析成果</p><p>(1)抗滑桩支挡边坡设计</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293654568646.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293672289728.png" alt="image.png"/></p><p>(2)重力式挡墙支护设计</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293692857938.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293705178783.png" alt="image.png"/></p><p>(3)扶壁式挡墙支挡结构设计</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293723622989.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724293733596600.png" alt="image.png"/></p><p>4<strong> 总结</strong></p><p><strong>&nbsp; &nbsp; &nbsp; &nbsp;</strong>本项目属于斜坡场地周边边坡支护设计,根据不同位置地质条件及斜坡高度,采取了不同的支护措施。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;利用南京库仑GEO5岩土分析软件,可以快速建立多种挡墙类型及抗滑桩支挡结构,便于方案对比分析,多模块可以联合使用,省去重复建模时间,提高了项目设计效率。</p>

GEO5某省道应急抢险修复工程设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 966 次浏览 • 2024-08-22 10:13 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、微型桩设计一、项目背景       某省道K160+800~K160+845段为直线填方路基段,外侧路肩墙高3.0~4.0m高,路面标高660.58~662.84m左右,纵面较平缓,道路外侧坡体为自然状态的单斜坡地形,横坡总体较缓。       今年5月中旬因遭受连续强降雨,地表水陡增,雨水渗入填土与原生黏性土面(粉质黏土属相对隔水层),导致上部填土层含水量增大,逐渐饱水软化,抗剪强度减小,容重增加等综合作用下产生路基沉降约20cm、路面开裂形成纵向裂缝,裂缝宽约5~10cm,路肩墙向外推移变形,严重影响交通。安全隐患影响较大。该道路为境内主干道,涉及数万人员出行及各种物资运输,影响重大,综合以上因素,该段路基水毁急需抢险治理。道路现场照片二、滑坡体特征       根据本次工程地质测绘、钻探揭露及收集的已有资料,滑坡滑体物质主要由粉质粘土夹块碎石、素填土组成,厚度2.0~6.0m,黄褐色、棕褐色,块石含量不均,一般10~30%,粒径一般 0.10~0.50m,粘土呈软塑~可塑状,透水性较差。       滑带土位于土层内部,埋深3.1m;滑带土主要为粘土,黄褐色,软塑状,含约10%的角砾、碎石,角砾粒径一般5~20mm,角砾呈次棱角状,无定向排列,滑带土受挤压、搓揉明显。       滑床物质为坡洪积(Q4dl+pl)黄褐色粉质粘土,粉质粘土呈可塑~硬塑状,滑床形态纵向上呈折线型,与地表形态相近。       滑体中地下水主要为松散岩类孔隙水,其地下水主要为大气降雨补给,具就地补给就近排泄,径流距离较短的特点。因滑坡体位于斜坡地段,地下水赋存条件差,排泄条件好,勘察期间对施工钻孔进行的水文地质观测及抽水试验成果,滑坡路段地下水较贫乏。滑带土取芯照片       该段上部为原道路修建时堆积填土,厚度约1~5.5m,下部为可塑~硬塑状粉质黏土,黄褐色,含少量碎石角砾,厚度约2.0~30.0m,下伏基岩为二叠系中统龙潭、大隆并组的页岩、灰岩,岩体较破碎,附近较远处基岩测得实际产状,倾向为328°,倾角12°;斜坡主要为填土、粉质黏土,以荒地、林地相间,局部旱地。植被总体较发育。近10年岸坡总体较稳定,未有大范围岸坡滑移现象,以局部下沉变形迹象为主。三、滑坡稳定性分析(1)定性分析       滑坡的形成,是由其地形地貌、地层岩性、水及人类工程活动的共同作用的结果:厚度较大的第四系坡洪积土的存在,为滑坡的形成提供了物质基础。据已有钻探资料揭示,在滑坡区域内,坡洪积土厚一般4.0~30.0m,为滑坡层产生不同程度的变形;水的作用,是滑坡形成的激发因素,区域内降雨量大并集中,多为大、暴雨,雨水的下渗,不但降低土体的抗剪强度,还提高滑体重量,产生动水压力等,为滑坡产生变形提了有利条件。       滑坡所的形成提供丰富的物质来源;软弱结构面的存在为滑坡的形成提供了良好的地质环境,便于形成滑动面,由于土体本身强度的降低,形成软弱结构面,这样接触面倾角适宜的条件下,使土体产生足够的下滑分力;滑坡体位处斜坡地段,地面坡角与滑面坡度基本一致,坡度角一般为10~22°,地形坡度条件为滑坡形成与位移提供了临空面,大气降水对滑体进行冲刷、侵蚀、饱和软化,使滑坡堆积处位置地形坡角较大,滑坡临空条件较好,为滑坡的形成及发生创造了有利的工程地质条件。汛期雨水较多,滑坡持续受大雨、暴雨影响,造成滑体物质力学性质降低,导致坡体中前部局部出现滑移、外挤迹象。若遇暴雨或持续降雨影响,该滑坡有可能在坡体中部、后部出现滑移破坏,并且有可能进一步加剧变形,发展为滑体发生整体下滑。目前该滑坡处于欠稳定状态。(2)滑动面参数确定       滑坡滑面参数的综合确定:综合考虑滑坡体性质(成分及覆盖层厚度)、滑面的工程物理特性、同类工程经验类比、反演分析成果及相关规范,确定本滑坡滑动面的抗剪设计参数为:C=14.2kPa(12.5 kPa),Φ=9.0°(8.5°)。滑坡设计计算参数见下表:(3)定量计算       本次稳定性计算采用GEO5软件。工况分为工况一、自重(天然状态),工况二、自重+暴雨(饱和状态)。安全系数根据《公路路基设计规范》(JGT D30-2015)第7.2.2条第1款有关规定,计算时安全系数分别为:       工况一、自重(天然状态)下,安全系数取1.25;       工况二、自重+暴雨(饱和状态)下,安全系数取1.15。       稳定性计算考虑2种工况:一、自重+天然状态;二、自重+饱水状态;对现有滑坡稳定性进行计算,计算方法采用折线法(不平衡推力法隐式),结算结果汇总如下:四、滑坡治理设计       在本设计中,首先对治理方案的技术合理性、施工的可行性和经济三个方面综合考虑。同时,着重考虑施工安全、工期的因素,从而选择最快捷的治理方案。结合本道路的特殊性及实际情况,对该滑坡进行综合治理。尽早完成道路施工为基本,其次为持久型治理设计,其目的在于确保以后该道路在长期运行的安全,同时消除滑坡对道路的安全隐患。两部分相辅相成,共同作用达到缩短工期、节约成本的目的。       综合考虑现场地形、地质及环境条件,其设计治理方案为:对既有滑坡体采用道路中线附近钢管桩注浆加固+外侧钢管桩地梁+挡墙恢复路基+道路中线内侧钻孔注浆加固+仰斜式排水孔+综合截排水措施,其它为路面恢复、综合交安。       本次设计方案验算是基于勘察成果所提供的岩土参数进行支挡后的稳定性计算,计算考虑2种工况:一、支挡+自重+天然状态;二、支挡+自重+饱水状态,计算方法采用折线法(不平衡推力法隐式),结算结果汇总如下:五、总结       本项目属于道路应急抢险修复工程。现场发现异常情况后,通过勘察了解场地地质构造及滑带土性质,从定性和定量角度分析了道路边坡的稳定性,从应急抢险角度出发,制定了钢管桩加挡墙的联合支挡形式。       本项目利用GEO5软件进行分析和验算,在场地评价和支护结构设计方面都起到了技术支撑作用,为设计方案提供了依据,最终方案已指导现场顺利施工。现场施工照片 查看全部
<p>使用模块:GEO5土质边坡稳定性分析、微型桩设计</p><p><strong>一、项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;某省道K160+800~K160+845段为直线填方路基段,外侧路肩墙高3.0~4.0m高,路面标高660.58~662.84m左右,纵面较平缓,道路外侧坡体为自然状态的单斜坡地形,横坡总体较缓。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;今年5月中旬因遭受连续强降雨,地表水陡增,雨水渗入填土与原生黏性土面(粉质黏土属相对隔水层),导致上部填土层含水量增大,逐渐饱水软化,抗剪强度减小,容重增加等综合作用下产生路基沉降约20cm、路面开裂形成纵向裂缝,裂缝宽约5~10cm,路肩墙向外推移变形,严重影响交通。安全隐患影响较大。该道路为境内主干道,涉及数万人员出行及各种物资运输,影响重大,综合以上因素,该段路基水毁急需抢险治理。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292423186125.png" alt="image.png"/></p><p style="text-align: center;">道路现场照片</p><p><strong>二、滑坡体特征</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据本次工程地质测绘、钻探揭露及收集的已有资料,滑坡滑体物质主要由粉质粘土夹块碎石、素填土组成,厚度2.0~6.0m,黄褐色、棕褐色,块石含量不均,一般10~30%,粒径一般 0.10~0.50m,粘土呈软塑~可塑状,透水性较差。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑带土位于土层内部,埋深3.1m;滑带土主要为粘土,黄褐色,软塑状,含约10%的角砾、碎石,角砾粒径一般5~20mm,角砾呈次棱角状,无定向排列,滑带土受挤压、搓揉明显。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑床物质为坡洪积(Q<sub>4</sub><sup>dl+pl</sup>)黄褐色粉质粘土,粉质粘土呈可塑~硬塑状,滑床形态纵向上呈折线型,与地表形态相近。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑体中地下水主要为松散岩类孔隙水,其地下水主要为大气降雨补给,具就地补给就近排泄,径流距离较短的特点。因滑坡体位于斜坡地段,地下水赋存条件差,排泄条件好,勘察期间对施工钻孔进行的水文地质观测及抽水试验成果,滑坡路段地下水较贫乏。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292469304981.png" alt="image.png"/></p><p style="text-align: center;">滑带土取芯照片</p><p>&nbsp; &nbsp; &nbsp; &nbsp;该段上部为原道路修建时堆积填土,厚度约1~5.5m,下部为可塑~硬塑状粉质黏土,黄褐色,含少量碎石角砾,厚度约2.0~30.0m,下伏基岩为二叠系中统龙潭、大隆并组的页岩、灰岩,岩体较破碎,附近较远处基岩测得实际产状,倾向为328°,倾角12°;斜坡主要为填土、粉质黏土,以荒地、林地相间,局部旱地。植被总体较发育。近10年岸坡总体较稳定,未有大范围岸坡滑移现象,以局部下沉变形迹象为主。</p><p><strong>三、滑坡稳定性分析</strong></p><p><strong>(1)定性分析</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑坡的形成,是由其地形地貌、地层岩性、水及人类工程活动的共同作用的结果:厚度较大的第四系坡洪积土的存在,为滑坡的形成提供了物质基础。据已有钻探资料揭示,在滑坡区域内,坡洪积土厚一般4.0~30.0m,为滑坡层产生不同程度的变形;水的作用,是滑坡形成的激发因素,区域内降雨量大并集中,多为大、暴雨,雨水的下渗,不但降低土体的抗剪强度,还提高滑体重量,产生动水压力等,为滑坡产生变形提了有利条件。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑坡所的形成提供丰富的物质来源;软弱结构面的存在为滑坡的形成提供了良好的地质环境,便于形成滑动面,由于土体本身强度的降低,形成软弱结构面,这样接触面倾角适宜的条件下,使土体产生足够的下滑分力;滑坡体位处斜坡地段,地面坡角与滑面坡度基本一致,坡度角一般为10~22°,地形坡度条件为滑坡形成与位移提供了临空面,大气降水对滑体进行冲刷、侵蚀、饱和软化,使滑坡堆积处位置地形坡角较大,滑坡临空条件较好,为滑坡的形成及发生创造了有利的工程地质条件。汛期雨水较多,滑坡持续受大雨、暴雨影响,造成滑体物质力学性质降低,导致坡体中前部局部出现滑移、外挤迹象。若遇暴雨或持续降雨影响,该滑坡有可能在坡体中部、后部出现滑移破坏,并且有可能进一步加剧变形,发展为滑体发生整体下滑。目前该滑坡处于欠稳定状态。</p><p><strong>(2)滑动面参数确定</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑坡滑面参数的综合确定:综合考虑滑坡体性质(成分及覆盖层厚度)、滑面的工程物理特性、同类工程经验类比、反演分析成果及相关规范,确定本滑坡滑动面的抗剪设计参数为:C=14.2kPa(12.5 kPa),Φ=9.0°(8.5°)。</p><p>滑坡设计计算参数见下表:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292524569019.png" alt="image.png"/></p><p><strong>(3)定量计算</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次稳定性计算采用GEO5软件。工况分为工况一、自重(天然状态),工况二、自重+暴雨(饱和状态)。安全系数根据《公路路基设计规范》(JGT D30-2015)第7.2.2条第1款有关规定,计算时安全系数分别为:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;工况一、自重(天然状态)下,安全系数取1.25;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;工况二、自重+暴雨(饱和状态)下,安全系数取1.15。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;稳定性计算考虑2种工况:一、自重+天然状态;二、自重+饱水状态;对现有滑坡稳定性进行计算,计算方法采用折线法(不平衡推力法隐式),结算结果汇总如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292571359212.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292593417922.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292606879846.png" alt="image.png"/></p><p><strong>四、滑坡治理设计</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;在本设计中,首先对治理方案的技术合理性、施工的可行性和经济三个方面综合考虑。同时,着重考虑施工安全、工期的因素,从而选择最快捷的治理方案。结合本道路的特殊性及实际情况,对该滑坡进行综合治理。尽早完成道路施工为基本,其次为持久型治理设计,其目的在于确保以后该道路在长期运行的安全,同时消除滑坡对道路的安全隐患。两部分相辅相成,共同作用达到缩短工期、节约成本的目的。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;综合考虑现场地形、地质及环境条件,其设计治理方案为:对既有滑坡体采用道路中线附近钢管桩注浆加固+外侧钢管桩地梁+挡墙恢复路基+道路中线内侧钻孔注浆加固+仰斜式排水孔+综合截排水措施,其它为路面恢复、综合交安。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次设计方案验算是基于勘察成果所提供的岩土参数进行支挡后的稳定性计算,计算考虑2种工况:一、支挡+自重+天然状态;二、支挡+自重+饱水状态,计算方法采用折线法(不平衡推力法隐式),结算结果汇总如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292640257868.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292653711604.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292693961253.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292706726594.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292722894560.png" alt="image.png"/></p><p><strong>五、总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本项目属于道路应急抢险修复工程。现场发现异常情况后,通过勘察了解场地地质构造及滑带土性质,从定性和定量角度分析了道路边坡的稳定性,从应急抢险角度出发,制定了钢管桩加挡墙的联合支挡形式。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本项目利用GEO5软件进行分析和验算,在场地评价和支护结构设计方面都起到了技术支撑作用,为设计方案提供了依据,最终方案已指导现场顺利施工。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1724292745367036.png" alt="image.png"/></p><p style="text-align: center;">现场施工照片</p>

GEO5拟静力法分析爆破工况

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 1200 次浏览 • 2024-01-09 14:29 • 来自相关话题

       近期有多位工程师咨询在GEO5当中如何模拟爆破工况,如果是采用拟静力法考虑爆破振动力,可以通过GEO5地震荷载中自定义水平地震系数的方法实现,本文将简述分析过程。1. 计算原理       根据《非煤露天矿边坡工程技术规范》(GB 51016-2014)附录D.2的说明,边坡稳定计算时,考虑爆破振动力,各条快的水平爆破力按下列公式计算式中:Fi’—第i条块爆破振动力的水平向等效静力(kN);Wi—第i条块的重量;βi—第i条块爆破力系数,可取0.1~0.3;ai—第i条块爆破振动质点水平向最大加速度(m/s2);g—重力加速度(m/s2);f—振动爆破频率(Hz);Vi—第i条块重心处质点向振动速度(cm/s);Q—爆破装药量,分段延时爆破时取最大一段的装药量(kg);Ri—爆破区药量分布的几何中心至观测点的距离;K、α—与采场地质条件、岩体性质、爆破条件等有关的系数,由振动检测和测试数据获取。2. 案例分析       某砂岩矿边坡坡高55m,根据初步设计,矿山采用分段逐孔起爆,最大一段(单孔)用药量为56.3kg,按《爆破安全规程》(GB6722-2014)取振动爆破频率为20Hz。爆破区药量分布的几何中心至观测点的综合距离取值为90m。参考《爆破安全规程》13.2.4参数建议值说明,K取150,α取1.5。爆破区不同岩性的K,α取值建议根据以上参数,另外βi取0.12,计算得到       打开GEO5土坡模块,建好模型后,将0.02直接输入到地震分析当中进行计算。       以上即为GEO5当中模拟爆破工况分析的方法,文中提到的两本规范电子版可点击下载:GB 51016-2014 非煤露天矿边坡工程技术规范.pdf爆破安全规程GB6722-2014.pdf 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp;近期有多位工程师咨询在GEO5当中如何模拟爆破工况,如果是采用拟静力法考虑爆破振动力,可以通过GEO5地震荷载中自定义水平地震系数的方法实现,本文将简述分析过程。</p><p>1. <strong>计算原理</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据《非煤露天矿边坡工程技术规范》(GB 51016-2014)附录D.2的说明,边坡稳定计算时,考虑爆破振动力,各条快的水平爆破力按下列公式计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1704781378952520.png" alt="image.png" width="116" height="122" style="width: 116px; height: 122px;"/></p><p>式中:</p><p>F<sub>i</sub><sup>’</sup>—第i条块爆破振动力的水平向等效静力(kN);</p><p>W<sub>i</sub>—第i条块的重量;</p><p>β<sub>i</sub>—第i条块爆破力系数,可取0.1~0.3;</p><p>a<sub>i</sub>—第i条块爆破振动质点水平向最大加速度(m/s<sup>2</sup>);</p><p>g—重力加速度(m/s<sup>2</sup>);</p><p>f—振动爆破频率(Hz);</p><p>V<sub>i</sub>—第i条块重心处质点向振动速度(cm/s);</p><p>Q—爆破装药量,分段延时爆破时取最大一段的装药量(kg);</p><p>R<sub>i</sub>—爆破区药量分布的几何中心至观测点的距离;</p><p>K、α—与采场地质条件、岩体性质、爆破条件等有关的系数,由振动检测和测试数据获取。</p><p>2. <strong>案例分析</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;某砂岩矿边坡坡高55m,根据初步设计,矿山采用分段逐孔起爆,最大一段(单孔)用药量为56.3kg,按《爆破安全规程》(GB6722-2014)取振动爆破频率为20Hz。爆破区药量分布的几何中心至观测点的综合距离取值为90m。参考《爆破安全规程》13.2.4参数建议值说明,K取150,α取1.5。</p><p style="text-align: center;">爆破区不同岩性的K,α取值建议</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1704781460971666.png" alt="image.png"/></p><p>根据以上参数,另外β<sub>i</sub>取0.12,计算得到</p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1704781521264233.png" alt="image.png" width="211" height="45" style="width: 211px; height: 45px;"/></p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1704781560373963.png" alt="image.png" width="210" height="20" style="width: 210px; height: 20px;"/></p><p><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1704781596793746.png" alt="image.png" width="263" height="36" style="width: 263px; height: 36px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;打开GEO5土坡模块,建好模型后,将0.02直接输入到地震分析当中进行计算。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1704781623181860.png" alt="image.png" width="377" height="130" style="width: 377px; height: 130px;"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1704781649296032.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;以上即为GEO5当中模拟爆破工况分析的方法,文中提到的两本规范电子版可点击下载:</p><p style="line-height: 16px;"><img style="vertical-align: middle; margin-right: 2px;" src="https://wen.kulunsoft.com/stat ... t%3Ba style="font-size:12px; color:#0066cc;" href="https://wen.kulunsoft.com/uplo ... ot%3B title="GB 51016-2014 非煤露天矿边坡工程技术规范.pdf">GB 51016-2014 非煤露天矿边坡工程技术规范.pdf</a></p><p style="line-height: 16px;"><img style="vertical-align: middle; margin-right: 2px;" src="https://wen.kulunsoft.com/stat ... t%3Ba style="font-size:12px; color:#0066cc;" href="https://wen.kulunsoft.com/uplo ... ot%3B title="爆破安全规程GB6722-2014.pdf">爆破安全规程GB6722-2014.pdf</a></p>

GEO5某灰厂稳定性评价

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 995 次浏览 • 2023-10-17 11:17 • 来自相关话题

使用模块:GEO5土坡稳定性分析一、  项目背景       某排土场斜坡表面堆积土体较为松散,排土场边坡整体处于稳定状态,坡度较陡地段存在局部失稳的现象。局部失稳出现在现场实测剖面2处,表现为边坡顶部边缘浅层的土体滑落,土体滑落宽度约45m,高度约15m,坡向301°,坡顶边缘处的最大坡度约35°。       现场调查发现,排土场斜坡表面堆积土体较为松散,在降雨的冲刷及坡顶雨水汇集的作用下,坡面多处存在冲刷沟槽。其中,发育范围最大的一处冲刷沟槽位于排土场东坡,坡高约55m,坡度37°,坡向106°,冲刷沟槽长度约90m,最大宽度8m~10m,最大切割深度10m~12m。二、场地岩土材料①弃渣       本次勘察过程中,在弃渣层共进行了70m的重型圆锥动力触探试验。动探数据显示变异系数达到0.98,说明回填的密实度很不均匀,回填时间短,欠固结,回填时未进行碾压,主要呈松散~稍密状态,局部呈中密~密实状态。坝体、坝基经过碾压后变异系数在0.172,整体夯实后较均匀,稍密状态。      根据本次勘察及前期勘察资料,并结合该区域的建筑经验综合推荐本层土的地基承载力特征值fak=100kPa~200kPa,内聚力标准值Ck=6~10kPa,内摩擦角标准值Фk=30°~33°,渗透系数k>2.0×10-1cm/s。       碾压后的坝体承载力特征值fak可达180kPa,内摩擦角标准值Фk=33°,变形模量为16MPa。       筑坝材料为排土场土料,即煤矿剥离的石渣料(碎石料),该石渣料储量很大,足以满足本期10m高的筑灰坝要求。②粉质黏土       黄褐色、灰褐色,以可塑状态为主。本次勘测中,在该层进行了4次标准贯入试验,经修正后的锤击数(平均值)N=6击。       本层取土3件,物理力学性质指标平均值如下:       天然含水量为28.1%,天然孔隙比为0.824,重度为18.8kN/m3,饱和度为92.8%,液限为34.3%,塑限为20.8%,塑性指数为13.5,液性指数为0.54;直剪试验:内摩擦角为18.9°,内聚力为19.8kPa,压缩系数a1-2为0.38MPa-1,压缩模量为5.1MPa。属可塑状态中等压缩性土。       根据该层土的物理力学性质指标,并结合已有资料及标准贯入试验击数(N=6),综合推荐本层土的地基承载力特征值fak=150kPa。③黏土       可塑~硬塑状态,分布在泥岩、泥质砂岩顶部,为基岩风化形成的残积土层。本次勘测中,在该层进行了3次标准贯入试验,经修正后的锤击数(平均值)N=11击。       根据当地建筑经验及该层土的标准贯入试验击数(N=11),综合推荐本层土的地基承载力特征值fak=220kPa。④泥岩       本层以泥岩为主,部分地段夹泥质砂岩层,勘察范围内呈全风化状态。本次勘测中,在该层进行了4次标准贯入试验,经修正后的锤击数(平均值)N=22击。根据当地建筑经验及该层土的标准贯入试验击数(N=22),综合推荐本层土的地基承载力特征值fak=260KPa。       岩土材料指标如下:三、分析工况       根据《火力发电厂干式贮灰场设计规程》(DL/T 5488-2014)中的相关条文,坝体应进行沉降计算、抗滑稳定计算,抗震设防烈度为7度及以上地区的坝体应进行抗震分析,必要时考虑渗流的影响。本工程场地地震基本烈度为6度,因此不考虑地震的影响,非正常条件下仅考虑暴雨的影响。       各工况抗滑稳定安全系数应按表1的规定确定,干灰场抗滑稳定的计算按照正常运行条件、非正常运行条件以及考虑贮灰、暴雨作用划分了不同的计算工况组合。(详见表2)表1  平原干灰场挡灰堤设计标准       根据可行性研究报告,灰场总容积约为1.3×107m3。根据表2平原干灰场挡灰堤设计标准,确定灰堤的设计等级应为二级。内、外坡正常运行条件下抗滑稳定安全系数K均为1.15,非常运行条件抗滑稳定安全系数K为1.00。       本项目无需考虑渗流和调洪水位,故对坝体、排土场原始边坡、排土场+坝体进行正常运行条件和考虑暴雨的非常运行条件下的稳定性计算与分析。(见表2)表2  干灰场边坡抗滑稳定计算工况表四、稳定性分析工况1:排土场+未贮灰       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa =10754.03 kN/m滑面上抗滑力的总和 :  Fp = 26536.15  kN/m下滑力矩 : Ma = 2276413.66  kNm/m抗滑力矩 : Mp = 5617171.42  kNm/m安全系数 = 2.47 > 1.15。排土场边坡在此工况下满足稳定性要求。工况2:排土场+贮灰       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa = 11986.31 kN/m滑面上抗滑力的总和 :  Fp = 29521.04 kN/m下滑力矩 : Ma = 2746662.31  kNm/m抗滑力矩 : Mp = 6764746.44  kNm/m安全系数 = 2.46 > 1.15。排土场边坡在此工况下满足稳定性要求。工况3:排土场+未贮灰+暴雨       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa = 11472.25 kN/m滑面上抗滑力的总和 :  Fp = 23401.98 kN/m下滑力矩 : Ma = 2428445.61  kNm/m抗滑力矩 : Mp = 4953731.64  kNm/m安全系数 = 2.04 > 1.00。排土场边坡在此工况下满足稳定性要求。工况4:排土场+贮灰+暴雨       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa = 12806.02 kN/m滑面上抗滑力的总和 :  Fp = 26057.66 kN/m下滑力矩 : Ma = 2934499.20  kNm/m抗滑力矩 : Mp = 5971113.16  kNm/m安全系数 = 2.03 > 1.00。排土场边坡在此工况下满足稳定性要求。五、 总结        按照规范要求,灰厂稳定性涉及多工况分析,通过GEO5软件建模,不需要多工况重复建模,在一个文件中即可实现不同工况的验算,操作方便快捷,也便于计算源文件的管理。 查看全部
<p><strong>使用模块:</strong><strong>GEO5</strong><strong>土坡稳定性分析</strong></p><p><strong>一、&nbsp; </strong><strong>项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;某排土场斜坡表面堆积土体较为松散,排土场边坡整体处于稳定状态,坡度较陡地段存在局部失稳的现象。局部失稳出现在现场实测剖面2处,表现为边坡顶部边缘浅层的土体滑落,土体滑落宽度约45m,高度约15m,坡向301°,坡顶边缘处的最大坡度约35°。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697512130485426.png" alt="image.png" width="437" height="292" style="width: 437px; height: 292px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;现场调查发现,排土场斜坡表面堆积土体较为松散,在降雨的冲刷及坡顶雨水汇集的作用下,坡面多处存在冲刷沟槽。其中,发育范围最大的一处冲刷沟槽位于排土场东坡,坡高约55m,坡度37°,坡向106°,冲刷沟槽长度约90m,最大宽度8m~10m,最大切割深度10m~12m。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697512164238377.png" alt="image.png" width="453" height="296" style="width: 453px; height: 296px;"/></p><p><strong>二、</strong><strong>场地岩土材料</strong></p><p>①弃渣</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次勘察过程中,在弃渣层共进行了70m的重型圆锥动力触探试验。动探数据显示变异系数达到0.98,说明回填的密实度很不均匀,回填时间短,欠固结,回填时未进行碾压,主要呈松散~稍密状态,局部呈中密~密实状态。坝体、坝基经过碾压后变异系数在0.172,整体夯实后较均匀,稍密状态。</p><p>&nbsp; &nbsp; &nbsp; 根据本次勘察及前期勘察资料,并结合该区域的建筑经验综合推荐本层土的地基承载力特征值fak=100kPa~200kPa,内聚力标准值Ck=6~10kPa,内摩擦角标准值Фk=30°~33°,渗透系数k>2.0×10-1cm/s。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;碾压后的坝体承载力特征值fak可达180kPa,内摩擦角标准值Фk=33°,变形模量为16MPa。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;筑坝材料为排土场土料,即煤矿剥离的石渣料(碎石料),该石渣料储量很大,足以满足本期10m高的筑灰坝要求。</p><p>②粉质黏土</p><p>&nbsp; &nbsp; &nbsp; &nbsp;黄褐色、灰褐色,以可塑状态为主。本次勘测中,在该层进行了4次标准贯入试验,经修正后的锤击数(平均值)N=6击。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本层取土3件,物理力学性质指标平均值如下:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;天然含水量为28.1%,天然孔隙比为0.824,重度为18.8kN/m3,饱和度为92.8%,液限为34.3%,塑限为20.8%,塑性指数为13.5,液性指数为0.54;直剪试验:内摩擦角为18.9°,内聚力为19.8kPa,压缩系数a1-2为0.38MPa-1,压缩模量为5.1MPa。属可塑状态中等压缩性土。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据该层土的物理力学性质指标,并结合已有资料及标准贯入试验击数(N=6),综合推荐本层土的地基承载力特征值fak=150kPa。</p><p>③黏土</p><p>&nbsp; &nbsp; &nbsp; &nbsp;可塑~硬塑状态,分布在泥岩、泥质砂岩顶部,为基岩风化形成的残积土层。本次勘测中,在该层进行了3次标准贯入试验,经修正后的锤击数(平均值)N=11击。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据当地建筑经验及该层土的标准贯入试验击数(N=11),综合推荐本层土的地基承载力特征值fak=220kPa。</p><p>④泥岩</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本层以泥岩为主,部分地段夹泥质砂岩层,勘察范围内呈全风化状态。本次勘测中,在该层进行了4次标准贯入试验,经修正后的锤击数(平均值)N=22击。根据当地建筑经验及该层土的标准贯入试验击数(N=22),综合推荐本层土的地基承载力特征值fak=260KPa。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;岩土材料指标如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697512254244701.png" alt="image.png" width="469" height="271" style="width: 469px; height: 271px;"/></p><p><strong>三、分析工况</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据《火力发电厂干式贮灰场设计规程》(DL/T 5488-2014)中的相关条文,坝体应进行沉降计算、抗滑稳定计算,抗震设防烈度为7度及以上地区的坝体应进行抗震分析,必要时考虑渗流的影响。本工程场地地震基本烈度为6度,因此不考虑地震的影响,非正常条件下仅考虑暴雨的影响。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;各工况抗滑稳定安全系数应按表1的规定确定,干灰场抗滑稳定的计算按照正常运行条件、非正常运行条件以及考虑贮灰、暴雨作用划分了不同的计算工况组合。(详见表2)</p><p style="text-align: center;">表1&nbsp; 平原干灰场挡灰堤设计标准</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697512317855355.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据可行性研究报告,灰场总容积约为1.3×107m3。根据表2平原干灰场挡灰堤设计标准,确定灰堤的设计等级应为二级。内、外坡正常运行条件下抗滑稳定安全系数K均为1.15,非常运行条件抗滑稳定安全系数K为1.00。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本项目无需考虑渗流和调洪水位,故对坝体、排土场原始边坡、排土场+坝体进行正常运行条件和考虑暴雨的非常运行条件下的稳定性计算与分析。(见表2)</p><p style="text-align: center;">表2&nbsp; 干灰场边坡抗滑稳定计算工况表</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697512401954662.png" alt="image.png"/></p><p><strong>四、</strong><strong>稳定性分析</strong></p><p>工况1:排土场+未贮灰</p><p>&nbsp; &nbsp; &nbsp; &nbsp;边坡稳定性验算 (瑞典法(Fellenius))</p><p>滑面上下滑力的总和 :&nbsp; Fa =10754.03 kN/m</p><p>滑面上抗滑力的总和 :&nbsp; Fp = 26536.15&nbsp; kN/m</p><p>下滑力矩 : Ma = 2276413.66&nbsp; kNm/m</p><p>抗滑力矩 : Mp = 5617171.42&nbsp; kNm/m</p><p>安全系数 = 2.47 &gt; 1.15。</p><p>排土场边坡在此工况下满足稳定性要求。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697512477425829.png" alt="image.png"/></p><p>工况2:排土场+贮灰</p><p>&nbsp; &nbsp; &nbsp; &nbsp;边坡稳定性验算 (瑞典法(Fellenius))</p><p>滑面上下滑力的总和 :&nbsp; Fa = 11986.31 kN/m</p><p>滑面上抗滑力的总和 :&nbsp; Fp = 29521.04 kN/m</p><p>下滑力矩 : Ma = 2746662.31&nbsp; kNm/m</p><p>抗滑力矩 : Mp = 6764746.44&nbsp; kNm/m</p><p>安全系数 = 2.46 &gt; 1.15。</p><p>排土场边坡在此工况下满足稳定性要求。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697512516751462.png" alt="image.png"/></p><p>工况3:排土场+未贮灰+暴雨</p><p>&nbsp; &nbsp; &nbsp; &nbsp;边坡稳定性验算 (瑞典法(Fellenius))</p><p>滑面上下滑力的总和 :&nbsp; Fa = 11472.25 kN/m</p><p>滑面上抗滑力的总和 :&nbsp; Fp = 23401.98 kN/m</p><p>下滑力矩 : Ma = 2428445.61&nbsp; kNm/m</p><p>抗滑力矩 : Mp = 4953731.64&nbsp; kNm/m</p><p>安全系数 = 2.04 &gt; 1.00。</p><p>排土场边坡在此工况下满足稳定性要求。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697512552188940.png" alt="image.png"/></p><p>工况4:排土场+贮灰+暴雨</p><p>&nbsp; &nbsp; &nbsp; &nbsp;边坡稳定性验算 (瑞典法(Fellenius))</p><p>滑面上下滑力的总和 :&nbsp; Fa = 12806.02 kN/m</p><p>滑面上抗滑力的总和 :&nbsp; Fp = 26057.66 kN/m</p><p>下滑力矩 : Ma = 2934499.20&nbsp; kNm/m</p><p>抗滑力矩 : Mp = 5971113.16&nbsp; kNm/m</p><p>安全系数 = 2.03 &gt; 1.00。</p><p>排土场边坡在此工况下满足稳定性要求。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697512588816756.png" alt="image.png"/></p><p><strong>五、</strong><strong>&nbsp;</strong><strong>总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 按照规范要求,灰厂稳定性涉及多工况分析,通过GEO5软件建模,不需要多工况重复建模,在一个文件中即可实现不同工况的验算,操作方便快捷,也便于计算源文件的管理。</p>

GEO5某水库库岸边坡支护设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 1063 次浏览 • 2023-10-17 10:58 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、GEO5抗滑桩设计一、  项目背景       拟建项目为道路边坡支护工程。道路北侧为拟建水库,规划水库岸坡距离道路路肩最近约8.38m,岸坡建成后标高为108.5m,坡比为1:4;为施工水库,K0+740~K1+007 段已进行放坡开挖;该段道路路肩标高为117.7~118.6m。       支护范围:K0+660~K1+007临湖侧(道路北侧)       边坡高度:10~12m       地质条件:将勘探深度范围内的地层划分为5个工程地质层,自上而下分别为:①素填土(Q4ml),平均厚度为2.48m;②粉质粘土(Q4al+pl)可塑,局部分布,平均厚度为5.01m;③粉质粘土(Q4al+pl)场地均有分布,平均厚度为6.59m;④强风化泥质砂岩(K2z)岩体破碎,属极软岩,岩体基本质量等级为Ⅴ级,平均厚度为3.89m;⑤中风化泥质砂岩(K2z),岩体较完整,属极软岩,岩体基本质量等级为Ⅴ级       特殊要求:道路边坡支护结构不侵占库岸边线       安全等级:一级二、设计方案       综合考虑地质、环境、边坡高度等诸方面因素,本着“安全可靠,经济合理,技术可行,方便施工”的原则,临湖侧边坡采用桩板墙方案:桩顶4m进行1:1放坡,坡体采用加筋格栅加固,坡面进行生态绿化;抗滑桩桩径1.4m,间距3m,桩长18m,进入中风化泥质砂岩层。边坡支护平面图边坡支护典型剖面图三、设计成果分析       采用GEO5边坡稳定性验算 (毕肖普法(Bishop))结果显示:安全系数 = 1.48 > 1.35 边坡稳定性满足要求。       抗滑桩验算结果显示:最大位移53.2mm;岩石地基横向承载力满足要求;弯矩最大值=1221.20kNm/m, 剪力最大值= 262.71kN/m,主筋为32根直径28mm,剪力筋为直径10mm,间距200mm。四、总结       该项目为库岸边坡治理设计,分析过程考虑库水位、坡顶超载的影响,支护设计采用抗滑桩+加筋土的联合支挡形式。通过GEO5软件能快速实现建模计算,方便工程师对设计方案进行评估和验证。 查看全部
<p><strong>使用模块:GEO5土质边坡稳定性分析、GEO5抗滑桩设计</strong></p><p><strong>一、&nbsp; </strong><strong>项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;拟建项目为道路边坡支护工程。道路北侧为拟建水库,规划水库岸坡距离道路路肩最近约8.38m,岸坡建成后标高为108.5m,坡比为1:4;为施工水库,K0+740~K1+007 段已进行放坡开挖;该段道路路肩标高为117.7~118.6m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;支护范围:K0+660~K1+007临湖侧(道路北侧)</p><p>&nbsp; &nbsp; &nbsp; &nbsp;边坡高度:10~12m</p><p>&nbsp; &nbsp; &nbsp; &nbsp;地质条件:将勘探深度范围内的地层划分为5个工程地质层,自上而下分别为:①素填土(Q<sub>4</sub><sup>ml</sup>),平均厚度为2.48m;②粉质粘土(Q<sub>4</sub><sup>al+pl</sup>)可塑,局部分布,平均厚度为5.01m;③粉质粘土(Q<sub>4</sub><sup>al+pl</sup>)场地均有分布,平均厚度为6.59m;④强风化泥质砂岩(K<sub>2</sub>z)岩体破碎,属极软岩,岩体基本质量等级为Ⅴ级,平均厚度为3.89m;⑤中风化泥质砂岩(K<sub>2</sub>z),岩体较完整,属极软岩,岩体基本质量等级为Ⅴ级</p><p>&nbsp; &nbsp; &nbsp; &nbsp;特殊要求:道路边坡支护结构不侵占库岸边线</p><p>&nbsp; &nbsp; &nbsp; &nbsp;安全等级:一级</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697511212460799.png" alt="image.png"/></p><p><strong>二、</strong><strong>设计方案</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;综合考虑地质、环境、边坡高度等诸方面因素,本着“安全可靠,经济合理,技术可行,方便施工”的原则,临湖侧边坡采用桩板墙方案:桩顶4m进行1:1放坡,坡体采用加筋格栅加固,坡面进行生态绿化;抗滑桩桩径1.4m,间距3m,桩长18m,进入中风化泥质砂岩层。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697511251723472.png" alt="image.png"/></p><p style="text-align: center;">边坡支护平面图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697511265328824.png" alt="image.png" width="480" height="233" style="width: 480px; height: 233px;"/></p><p style="text-align: center;">边坡支护典型剖面图</p><p><strong>三、</strong><strong>设计成果分析</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;采用GEO5边坡稳定性验算 (毕肖普法(Bishop))结果显示:安全系数 = 1.48 &gt; 1.35 边坡稳定性满足要求。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697511389326134.png" alt="image.png" width="487" height="261" style="width: 487px; height: 261px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;抗滑桩验算结果显示:最大位移53.2mm;岩石地基横向承载力满足要求;弯矩最大值=1221.20kNm/m, 剪力最大值= 262.71kN/m,主筋为32根直径28mm,剪力筋为直径10mm,间距200mm。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697511416476893.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697511429938627.png" alt="image.png"/></p><p><strong>四、</strong><strong>总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;该项目为库岸边坡治理设计,分析过程考虑库水位、坡顶超载的影响,支护设计采用抗滑桩+加筋土的联合支挡形式。通过GEO5软件能快速实现建模计算,方便工程师对设计方案进行评估和验证。</p>

GEO5某输变电塔基边坡专项勘察设计

岩土工程南京库仑张工 发表了文章 • 2 个评论 • 962 次浏览 • 2023-10-17 09:34 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、抗滑桩一、项目背景       因场地重大基础设施建设,某输变电线路通道受限,某塔位须立于深厚人工填土边坡上。该人工填土边坡位于西部某大河北岸,边坡纵向长70m,高28-35m,坡顶宽100m,坡脚宽80m,整体坡度28°,坡脚和东侧边缘为已建重力式挡墙。根据平面布置,拟建塔位位于边坡东北角近坡顶区域。       据现场调查,拟建塔位附近区域的填土边坡已发生明显固结沉降变形,局部区域的表层有下滑变形痕迹,坡脚和东侧挡墙未见变形痕迹。经详细勘察及计算分析,在天然工况和暴雨工况下该边坡处于欠稳定状态,地震工况下处于不稳定状态,需对该人工填土边坡采取治理措施。塔位场地侧摄影像图二、边坡稳定性定性评价       根据多次踏勘现场情况进行对比,拟建塔位附近区域的填土边坡已发生明显固结沉降变形,局部区域的表层有下滑变形痕迹,坡脚和东侧挡墙未见变形痕迹。固结沉降变形主要表现为坡顶的混凝土路面、硬化地面和坡顶混凝土输送中心的重力式挡墙开裂,排水沟开裂,分级马道开裂下沉,框格梁开裂,正六边形砼块破裂,土体与框格梁脱离、脱空,以及植草坡面开裂、下错等。边坡坡脚和侧面挡墙未见开裂、倾斜和滑移等变形,坡体无整体蠕滑迹象。       综上所述,该人工填土边坡尚未经历雨季,在目前的状态下,局部产生固结沉降变形,坡体表层松散土体局部蠕滑,无整体变形迹象。塔位附近的坡面填土表层蠕滑三、计算工况和参数选取       根据边坡失稳特征及可能出现的各种载荷情况,计算中主要考虑降雨、地震等因素。参照《中国地震动参数区划图》(GB18306-2015)及《建筑抗震设计规范》(GB50011-2010,2016年版),工程区地震基本烈度为Ⅷ度,地震动峰值加速度为0.30g,综合水平地震系数取0.075。       本工程防治工程安全等级为Ⅰ级,根据《建筑边坡工程技术规范》(GB 50330-2013)表5.3.2规定,计算工况确定如下:       Ⅰ工况——天然工况,安全系数取1.35。       Ⅱ工况——暴雨工况,安全系数取1.25。       Ⅲ工况——地震工况,安全系数取1.15。       本次边坡稳定性计算中所采用的有关岩土物理力学参数,根据场区边坡勘察的室内外试验成果、反演法计算结果、地区工程经验、边坡变形现状、边坡的时间效应等因素,综合按自然状态(工况Ⅰ)、暴雨状态(工况Ⅱ)和地震状态 (工况Ⅲ)推荐选用。四、天然边坡稳定性评价       根据计算模型和计算参数,在采用圆弧法计算边坡稳定性时,主要采用GEO5岩土软件的“土质边坡稳定分析”模块,分析边坡在天然工况、暴雨工况和地震工况下的最不利滑动面和稳定性。本次主要针对与拟建铁塔所在位置密切相关的最不利剖面7-7’和8-8’进行计算,计算结果如下表。边坡圆弧法稳定性计算成果统计表(7-7’剖面)边坡圆弧法稳定性计算成果统计表(7-7’剖面,地面超载F=2×400kN)边坡圆弧法稳定性计算成果统计表(8-8’剖面)边坡整体失稳计算简图(7-7’剖面,暴雨工况,Fs=1.01)       以上计算表中的剩余下滑力为坡体整体滑动时的剩余下滑力,由于铁塔位于近坡顶区域,铁塔所在位置的剩余下滑力与上表中的剩余下滑力会有差异。参照现场踏勘调查与定性分析,考虑现有挡墙的作用,该边坡在天然状态(无超载条件)下处于基本稳定,在暴雨状态下处于欠稳定,在地震工况下处于不稳定,需采取治理措施。       当考虑超载时,该边坡在天然状态(可变超载为2×400kN条件)下处于基本稳定,坡顶超载对边坡整体稳定性影响较小,在暴雨工况下处于欠稳定,在地震工况下处于不稳定,需采取治理措施。五、支护方案设计       根据勘查结果,参考类似工程治理的经验教训,经过多次评审比选,为保证输电线路长期运行安全,综合边坡的调查和稳定性分析结果、现场的交通、场地条件、施工工期和施工安全等,提出了2种边坡治理方案,方案一:三排圆形抗滑桩+截排水沟;方案二:一排圆形抗滑桩+清方+截排水沟。下面将分别叙述。方案一:三排圆形抗滑桩+截排水沟       根据现场地形条件和勘察成果,结合铁塔所在位置,采用三排共计17根抗滑桩进行边坡治理,第一排抗滑桩位于坡顶塔位上坡侧,共7根,第二排抗滑桩位于塔位A腿上方、BD腿下方的马道,共6根,第三排抗滑桩位于A腿下坡侧的马道,共4根。桩间距均为5m。7-7’剖面暴雨工况下整体稳定性计算简图7-7’剖面暴雨工况下局部稳定性计算简图(第一排下坡侧)7-7’剖面暴雨工况下局部稳定性计算简图(第二排下坡侧)8-8’剖面暴雨工况下整体稳定性计算简图8-8’剖面暴雨工况下局部稳定性计算简图(第一排下坡侧)8-8’剖面暴雨工况下局部稳定性计算简图(第二排下坡侧)       通过以上计算可得,设置抗滑桩后,边坡整体稳定性和局部稳定性均满足要求。方案二:一排抗滑桩+清方+截排水沟       该方案是在坡顶处布置一排抗滑桩,桩长为27m,桩径为2.8m,桩中心间距5m,共计10根抗滑桩。桩下坡侧铁塔基础附近采用部分挖方,挖方后在抗滑桩悬臂段挂桩间挡土板,清方区域的挖方量约1.0万m3。暴雨工况下整体稳定性计算简图(清方后)暴雨工况下局部稳定性计算简图(清方后)       通过以上计算可得,坡顶设置抗滑桩并清方后,边坡整体稳定性和局部稳定性均满足要求。六、总结       结合GEO5土质边坡稳定分析、抗滑桩验算模块,对西部地区某输变电塔基边坡进行了分析和计算,验证设计提出的两种方案,建模速度快,解决了多工况计算问题,为项目的实施提供了技术支撑。 查看全部
<p><strong>使用模块:GEO5土质边坡稳定性分析、抗滑桩</strong></p><p><strong>一、</strong><strong>项目背景</strong><br/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;因场地重大基础设施建设,某输变电线路通道受限,某塔位须立于深厚人工填土边坡上。该人工填土边坡位于西部某大河北岸,边坡纵向长70m,高28-35m,坡顶宽100m,坡脚宽80m,整体坡度28°,坡脚和东侧边缘为已建重力式挡墙。根据平面布置,拟建塔位位于边坡东北角近坡顶区域。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;据现场调查,拟建塔位附近区域的填土边坡已发生明显固结沉降变形,局部区域的表层有下滑变形痕迹,坡脚和东侧挡墙未见变形痕迹。经详细勘察及计算分析,在天然工况和暴雨工况下该边坡处于欠稳定状态,地震工况下处于不稳定状态,需对该人工填土边坡采取治理措施。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697505810307040.png" alt="image.png" width="446" height="278" style="width: 446px; height: 278px;"/></p><p style="text-align: center;">塔位场地侧摄影像图</p><p><strong>二、</strong><strong>边坡稳定性定性评价</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据多次踏勘现场情况进行对比,拟建塔位附近区域的填土边坡已发生明显固结沉降变形,局部区域的表层有下滑变形痕迹,坡脚和东侧挡墙未见变形痕迹。固结沉降变形主要表现为坡顶的混凝土路面、硬化地面和坡顶混凝土输送中心的重力式挡墙开裂,排水沟开裂,分级马道开裂下沉,框格梁开裂,正六边形砼块破裂,土体与框格梁脱离、脱空,以及植草坡面开裂、下错等。边坡坡脚和侧面挡墙未见开裂、倾斜和滑移等变形,坡体无整体蠕滑迹象。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;综上所述,该人工填土边坡尚未经历雨季,在目前的状态下,局部产生固结沉降变形,坡体表层松散土体局部蠕滑,无整体变形迹象。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697505860210554.png" alt="image.png"/></p><p style="text-align: center;">塔位附近的坡面填土表层蠕滑</p><p><strong>三、</strong><strong>计算工况和参数选取</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据边坡失稳特征及可能出现的各种载荷情况,计算中主要考虑降雨、地震等因素。参照《中国地震动参数区划图》(GB18306-2015)及《建筑抗震设计规范》(GB50011-2010,2016年版),工程区地震基本烈度为Ⅷ度,地震动峰值加速度为0.30g,综合水平地震系数取0.075。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本工程防治工程安全等级为Ⅰ级,根据《建筑边坡工程技术规范》(GB 50330-2013)表5.3.2规定,计算工况确定如下:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;Ⅰ工况——天然工况,安全系数取1.35。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;Ⅱ工况——暴雨工况,安全系数取1.25。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;Ⅲ工况——地震工况,安全系数取1.15。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;本次边坡稳定性计算中所采用的有关岩土物理力学参数,根据场区边坡勘察的室内外试验成果、反演法计算结果、地区工程经验、边坡变形现状、边坡的时间效应等因素,综合按自然状态(工况Ⅰ)、暴雨状态(工况Ⅱ)和地震状态 (工况Ⅲ)推荐选用。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697505977877909.png" alt="image.png"/></p><p><strong>四、</strong><strong>天然边坡稳定性评价</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据计算模型和计算参数,在采用圆弧法计算边坡稳定性时,主要采用GEO5岩土软件的“土质边坡稳定分析”模块,分析边坡在天然工况、暴雨工况和地震工况下的最不利滑动面和稳定性。本次主要针对与拟建铁塔所在位置密切相关的最不利剖面7-7’和8-8’进行计算,计算结果如下表。</p><p style="text-align: center;">边坡圆弧法稳定性计算成果统计表(7-7’剖面)</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506080619100.png" alt="image.png"/></p><p style="text-align: center;">边坡圆弧法稳定性计算成果统计表(7-7’剖面,地面超载F=2×400kN)</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506107310719.png" alt="image.png"/></p><p style="text-align: center;">边坡圆弧法稳定性计算成果统计表(8-8’剖面)</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506138301038.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506158571092.png" alt="image.png" width="488" height="277" style="width: 488px; height: 277px;"/></p><p style="text-align: center;">边坡整体失稳计算简图(7-7’剖面,暴雨工况,Fs=1.01)<br/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;以上计算表中的剩余下滑力为坡体整体滑动时的剩余下滑力,由于铁塔位于近坡顶区域,铁塔所在位置的剩余下滑力与上表中的剩余下滑力会有差异。参照现场踏勘调查与定性分析,考虑现有挡墙的作用,该边坡在天然状态(无超载条件)下处于基本稳定,在暴雨状态下处于欠稳定,在地震工况下处于不稳定,需采取治理措施。</p><p style="text-align: center;">&nbsp; &nbsp; &nbsp; &nbsp;当考虑超载时,该边坡在天然状态(可变超载为2×400kN条件)下处于基本稳定,坡顶超载对边坡整体稳定性影响较小,在暴雨工况下处于欠稳定,在地震工况下处于不稳定,需采取治理措施。</p><p><strong>五、</strong><strong>支护方案设计</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据勘查结果,参考类似工程治理的经验教训,经过多次评审比选,为保证输电线路长期运行安全,综合边坡的调查和稳定性分析结果、现场的交通、场地条件、施工工期和施工安全等,提出了2种边坡治理方案,方案一:三排圆形抗滑桩+截排水沟;方案二:一排圆形抗滑桩+清方+截排水沟。下面将分别叙述。</p><p><strong>方案一:三排圆形抗滑桩</strong><strong>+</strong><strong>截排水沟</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据现场地形条件和勘察成果,结合铁塔所在位置,采用三排共计17根抗滑桩进行边坡治理,第一排抗滑桩位于坡顶塔位上坡侧,共7根,第二排抗滑桩位于塔位A腿上方、BD腿下方的马道,共6根,第三排抗滑桩位于A腿下坡侧的马道,共4根。桩间距均为5m。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506215274951.png" alt="image.png"/></p><p style="text-align: center;">7-7’剖面暴雨工况下整体稳定性计算简图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506240893766.png" alt="image.png"/></p><p style="text-align: center;">7-7’剖面暴雨工况下局部稳定性计算简图(第一排下坡侧)</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506264838097.png" alt="image.png"/></p><p style="text-align: center;">7-7’剖面暴雨工况下局部稳定性计算简图(第二排下坡侧)</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506294293897.png" alt="image.png"/></p><p style="text-align: center;">8-8’剖面暴雨工况下整体稳定性计算简图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506313503760.png" alt="image.png"/></p><p style="text-align: center;">8-8’剖面暴雨工况下局部稳定性计算简图(第一排下坡侧)</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506331953545.png" alt="image.png"/></p><p style="text-align: center;">8-8’剖面暴雨工况下局部稳定性计算简图(第二排下坡侧)</p><p>&nbsp; &nbsp; &nbsp; &nbsp;通过以上计算可得,设置抗滑桩后,边坡整体稳定性和局部稳定性均满足要求。</p><p><strong>方案二:一排抗滑桩</strong><strong>+</strong><strong>清方</strong><strong>+</strong><strong>截排水沟</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;该方案是在坡顶处布置一排抗滑桩,桩长为27m,桩径为2.8m,桩中心间距5m,共计10根抗滑桩。桩下坡侧铁塔基础附近采用部分挖方,挖方后在抗滑桩悬臂段挂桩间挡土板,清方区域的挖方量约1.0万m<sup>3</sup>。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506384203723.png" alt="image.png"/></p><p style="text-align: center;">暴雨工况下整体稳定性计算简图(清方后)</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697506404474775.png" alt="image.png"/></p><p style="text-align: center;">暴雨工况下局部稳定性计算简图(清方后)<br/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;通过以上计算可得,坡顶设置抗滑桩并清方后,边坡整体稳定性和局部稳定性均满足要求。</p><p><strong>六、总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;结合GEO5土质边坡稳定分析、抗滑桩验算模块,对西部地区某输变电塔基边坡进行了分析和计算,验证设计提出的两种方案,建模速度快,解决了多工况计算问题,为项目的实施提供了技术支撑。</p>

GEO5华中地区某处高边坡变更设计

岩土工程南京库仑张工 发表了文章 • 1 个评论 • 1005 次浏览 • 2023-10-16 09:29 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、抗滑桩一、 项目背景       项目高边坡出露岩性为泥质砂岩,岩性软弱且节理发育,开挖后高边坡稳定性较差,防护难度较大。原设计在高边坡第3级平台位置设置卸载平台,卸载平台横向宽约170m,对平台以上标高进行开挖卸载。因标段内以缺方为主,将卸载平台范围内设置为取土场。但由于项目征地困难,原设计方案难以实施,因此在征地范围内对原设计方案进行调整。边坡原设计防护型式工程地质剖面图二、边坡工程地质条件       高边坡段场地覆盖层主要为为第三系泥质砂岩具体工程地质特性分述如下:       ①1全风化泥质砂岩:黄褐色,原岩风化强烈,结构构造已破坏,局部具高岭土化。岩芯呈土状,含原岩风化残块,揭露厚度为2.20~2.80m,土石等级为Ⅲ级硬土。       ①2.强风化泥质砂岩:红褐色,泥质砂质结构,层状构造,岩质极软,手掰易断,局部具高岭土化。岩芯多呈短柱状、块状;揭露厚度为13.20~17.80m,土石等级为Ⅳ级软石。       ①3中风化泥质砂岩:红褐色,泥质砂质结构,层状构造,岩质极软,局部具高岭土化。岩芯呈柱状、短柱状,天然抗压强度0.4~1.6MPa;未揭穿,土石等级为Ⅳ级软石。边坡稳定性计算参数表三、设计方案       本工况进行了三种方案设计,分别是方案1:分级开挖+分级锚固、方案2:方形桩板墙+分级加固和方案3:圆形桩板墙+分级加固,每种方案分别进行了加固前和加固后的天然、暴雨情况分析,其中天然工况安全系数按1.25控制,暴雨工况安全系数按1.15控制。设计方案1:分级开挖+分级锚固       结合边坡的地形和稳定坡率,对边坡采用1:1.0进行开挖,边坡最大开挖高度为4级边坡,每级坡高8m,1、3级坡顶平台宽度为2m,第2级坡顶平台宽度为12m,1-4边坡坡率为1:1.0。       边坡防护方案:因开挖后边坡稳定性较差,边坡的防护方案以锚杆框架、锚索框架加固为主。根据开挖断面,边坡的1-4级均处于强风化层。边坡第1-3采用锚索框架+植生袋绿化,边坡锚固选取中风化层作为锚固层,结合中风化层深度,边坡第1-3级锚索长度分别为26m、28m、32m。第4级采用锚杆框架,锚固段深入强风化层,锚固深度12m。       经计算后,边坡加固前的天然工况下的稳定性系数为1.15,暴雨工况下的稳定性系数达0.98,均不满足规范要求。经过加固后的天然工况下的稳定性系数为1.35,暴雨工况下的稳定性系数达1.17,满足规范要求,边坡的防护方案可行。(1)边坡开挖防护前天然工况:边坡稳定性系数Fs=1.15<1.25,不满足规范要求暴雨工况:边坡稳定性系数Fs=0.98<1.15,不满足规范要求(2)边坡开挖防护后天然工况:边坡稳定性系数Fs=1.35>1.25,满足要求 暴雨工况:边坡稳定性系数Fs=1.17>1.15,满足要求设计方案2:方形桩板墙+分级锚固       考虑本项目边坡岩性为泥质砂岩,坡体内发育顺向结构面,边坡开挖过程中坡表可能发生浅层滑塌。分级开挖和防护难度较大。设计考虑采用桩板墙进行预加固。       边坡防护方案:边坡第1级采用方形桩板墙预加固,尽可能减少路堑边坡开挖。桩顶往上按8m分级放坡,坡率为1:1.0,坡顶上第1级边坡采用锚索框架+植生袋绿化加固,为提高抗滑桩体稳定性,在距离桩顶1m和3m位置分别设置1孔锚索。       采用不平衡推力法(隐式),按最大下滑力搜索最薄弱滑面,经计算后,边坡加固前的天然工况下的稳定性系数为1.07,暴雨工况下的稳定性系数为0.98,均不满足规范要求。经过抗滑桩(桩身抗滑承载力为3000kN)加固后的天然工况下的稳定性系数为1.39,暴雨工况下的稳定性系数达1.18,满足规范要求,边坡的防护方案可行。(1)边坡开挖防护前天然工况:边坡稳定性系数Fs=1.07<1.25,不满足规范要求暴雨工况:边坡稳定性系数Fs=0.98<1.15,不满足规范要求(2)边坡开挖防护后天然工况:边坡稳定性系数Fs=1.39>1.25,满足要求暴雨工况:边坡稳定性系数Fs=1.18>1.15,满足要求(3)抗滑桩验算       由于暴雨工况下更为不利,此处仅暴雨工况下抗滑桩验算结果。桩身锚索加固抗滑桩位移、土压力分析截面强度分析截面配筋验算锚索验算挡板配筋验算设计方案3:圆形桩板墙+分级锚固       考虑方形桩成孔施工困难较大,需采用人工挖孔桩,施工危险性较大。设计考虑采用机械成孔方式做圆形抗滑桩。       边坡防护方案:边坡第1级采用圆形抗滑桩进行预加固,机械成孔施工效率较高。为提高抗滑桩体稳定性,在距离桩顶1m和3m位置分别设置1孔锚索。桩顶往上按8m分级放坡,坡率为1:1.0,坡顶上第1级边坡采用锚索框架+植生袋绿化加固。       采用不平衡推力法(隐式),按最大下滑力搜索最薄弱滑面,经计算后,边坡加固前的天然工况下的稳定性系数为1.07。暴雨工况下的稳定性系数为0.98,均不满足规范要求。经过抗滑桩(桩身抗滑承载力为3000kN)加固后的天然工况下的稳定性系数为1.39,暴雨工况下的稳定性系数达1.18,满足规范要求,边坡的防护方案可行。方案三典型设计图       由于圆形抗滑桩土坡模块计算与方形桩板墙一致,故这里仅对圆形抗滑桩验算部分进行展示。截面配筋验算挡板配筋验算四、总结       考虑到项目缺土,以及综合考虑造价等因素,最终方案选择方案1:分级开挖+分级加固方案,并且要求现场开挖一级、防护一级。       结合GEO5土质边坡稳定分析、抗滑桩验算模块,对中部地区某处高边坡变更设计进行了分析和计算,很好的解决了设计问题,为设计方案提供了依据,取得满意结果,最终方案已指导现场顺利施工。 查看全部
<p><strong>使用模块:GEO5土质边坡稳定性分析、抗滑桩</strong><br/></p><p><strong>一、&nbsp;</strong><strong>项目背景</strong><br/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;项目高边坡出露岩性为泥质砂岩,岩性软弱且节理发育,开挖后高边坡稳定性较差,防护难度较大。原设计在高边坡第3级平台位置设置卸载平台,卸载平台横向宽约170m,对平台以上标高进行开挖卸载。因标段内以缺方为主,将卸载平台范围内设置为取土场。但由于项目征地困难,原设计方案难以实施,因此在征地范围内对原设计方案进行调整。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697418170606020.png" alt="image.png"/></p><p style="text-align: center;">边坡原设计防护型式</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697418203729896.png" alt="image.png" width="434" height="315" style="width: 434px; height: 315px;"/></p><p style="text-align: center;">工程地质剖面图</p><p><strong>二、</strong><strong>边坡工程地质条件</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;高边坡段场地覆盖层主要为为第三系泥质砂岩具体工程地质特性分述如下:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①<sub>1</sub>全风化泥质砂岩:黄褐色,原岩风化强烈,结构构造已破坏,局部具高岭土化。岩芯呈土状,含原岩风化残块,揭露厚度为2.20~2.80m,土石等级为Ⅲ级硬土。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①<sub>2</sub>.强风化泥质砂岩:红褐色,泥质砂质结构,层状构造,岩质极软,手掰易断,局部具高岭土化。岩芯多呈短柱状、块状;揭露厚度为13.20~17.80m,土石等级为Ⅳ级软石。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;①<sub>3</sub>中风化泥质砂岩:红褐色,泥质砂质结构,层状构造,岩质极软,局部具高岭土化。岩芯呈柱状、短柱状,天然抗压强度0.4~1.6MPa;未揭穿,土石等级为Ⅳ级软石。</p><p style="text-align: center;">边坡稳定性计算参数表</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697418298136024.png" alt="image.png"/></p><p><strong>三、设计方案</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;本工况进行了三种方案设计,分别是方案1:分级开挖+分级锚固、方案2:方形桩板墙+分级加固和方案3:圆形桩板墙+分级加固,每种方案分别进行了加固前和加固后的天然、暴雨情况分析,其中天然工况安全系数按1.25控制,暴雨工况安全系数按1.15控制。</p><p><strong>设计方案</strong><strong>1</strong><strong>:分级开挖</strong><strong>+</strong><strong>分级锚固</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;结合边坡的地形和稳定坡率,对边坡采用1:1.0进行开挖,边坡最大开挖高度为4级边坡,每级坡高8m,1、3级坡顶平台宽度为2m,第2级坡顶平台宽度为12m,1-4边坡坡率为1:1.0。</p><p><strong>&nbsp; &nbsp; &nbsp; &nbsp;边坡防护方案:</strong>因开挖后边坡稳定性较差,边坡的防护方案以锚杆框架、锚索框架加固为主。根据开挖断面,边坡的1-4级均处于强风化层。边坡第1-3采用锚索框架+植生袋绿化,边坡锚固选取中风化层作为锚固层,结合中风化层深度,边坡第1-3级锚索长度分别为26m、28m、32m。第4级采用锚杆框架,锚固段深入强风化层,锚固深度12m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;经计算后,边坡加固前的天然工况下的稳定性系数为1.15,暴雨工况下的稳定性系数达0.98,均不满足规范要求。经过加固后的天然工况下的稳定性系数为1.35,暴雨工况下的稳定性系数达1.17,满足规范要求,边坡的防护方案可行。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697418357520663.png" alt="image.png" width="478" height="261" style="width: 478px; height: 261px;"/></p><p><br/></p><p>(1)边坡开挖防护前</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697418394164409.png" alt="image.png" width="443" height="287" style="width: 443px; height: 287px;"/></p><p style="text-align: center;">天然工况:边坡稳定性系数Fs=1.15&lt;1.25,不满足规范要求</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697418463342961.png" alt="image.png" width="441" height="278" style="width: 441px; height: 278px;"/></p><p style="text-align: center;">暴雨工况:边坡稳定性系数Fs=0.98&lt;1.15,不满足规范要求</p><p>(2)边坡开挖防护后</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697418592805739.png" alt="image.png" width="436" height="296" style="width: 436px; height: 296px;"/></p><p style="text-align: center;">天然工况:边坡稳定性系数Fs=1.35&gt;1.25,满足要求</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697418624205272.png" alt="image.png" width="437" height="285" style="width: 437px; height: 285px;"/></p><p style="text-align: center;">&nbsp;暴雨工况:边坡稳定性系数Fs=1.17&gt;1.15,满足要求</p><p><strong>设计方案</strong><strong>2</strong><strong>:方形桩板墙</strong><strong>+</strong><strong>分级锚固</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;考虑本项目边坡岩性为泥质砂岩,坡体内发育顺向结构面,边坡开挖过程中坡表可能发生浅层滑塌。分级开挖和防护难度较大。设计考虑采用桩板墙进行预加固。</p><p><strong>&nbsp; &nbsp; &nbsp; &nbsp;边坡防护方案:</strong>边坡第1级采用方形桩板墙预加固,尽可能减少路堑边坡开挖。桩顶往上按8m分级放坡,坡率为1:1.0,坡顶上第1级边坡采用锚索框架+植生袋绿化加固,为提高抗滑桩体稳定性,在距离桩顶1m和3m位置分别设置1孔锚索。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;采用不平衡推力法(隐式),按最大下滑力搜索最薄弱滑面,经计算后,边坡加固前的天然工况下的稳定性系数为1.07,暴雨工况下的稳定性系数为0.98,均不满足规范要求。经过抗滑桩(桩身抗滑承载力为3000kN)加固后的天然工况下的稳定性系数为1.39,暴雨工况下的稳定性系数达1.18,满足规范要求,边坡的防护方案可行。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697418894101495.png" alt="image.png" width="485" height="264" style="width: 485px; height: 264px;"/></p><p>(1)边坡开挖防护前</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697418946200929.png" alt="image.png" width="424" height="295" style="width: 424px; height: 295px;"/></p><p style="text-align: center;">天然工况:边坡稳定性系数Fs=1.07&lt;1.25,不满足规范要求</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419373702575.png" alt="image.png" width="424" height="303" style="width: 424px; height: 303px;"/></p><p style="text-align: center;">暴雨工况:边坡稳定性系数Fs=0.98&lt;1.15,不满足规范要求</p><p>(2)边坡开挖防护后</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419418576124.png" alt="image.png" width="424" height="310" style="width: 424px; height: 310px;"/></p><p style="text-align: center;">天然工况:边坡稳定性系数Fs=1.39&gt;1.25,满足要求</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419469392686.png" alt="image.png" width="428" height="302" style="width: 428px; height: 302px;"/></p><p style="text-align: center;">暴雨工况:边坡稳定性系数Fs=1.18&gt;1.15,满足要求</p><p>(3)抗滑桩验算</p><p>&nbsp; &nbsp; &nbsp; &nbsp;由于暴雨工况下更为不利,此处仅暴雨工况下抗滑桩验算结果。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419520352850.png" alt="image.png" width="344" height="310" style="width: 344px; height: 310px;"/></p><p style="text-align: center;">桩身锚索加固</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419562433346.png" alt="image.png"/></p><p style="text-align: center;">抗滑桩位移、土压力分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419581941910.png" alt="image.png"/></p><p style="text-align: center;">截面强度分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419609566154.png" alt="image.png"/></p><p style="text-align: center;">截面配筋验算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419624408128.png" alt="image.png"/></p><p style="text-align: center;">锚索验算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419636524582.png" alt="image.png"/></p><p style="text-align: center;">挡板配筋验算</p><p><strong>设计方案</strong><strong>3</strong><strong>:圆形桩板墙</strong><strong>+</strong><strong>分级锚固</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;考虑方形桩成孔施工困难较大,需采用人工挖孔桩,施工危险性较大。设计考虑采用机械成孔方式做圆形抗滑桩。</p><p><strong>&nbsp; &nbsp; &nbsp; &nbsp;边坡防护方案:</strong>边坡第1级采用圆形抗滑桩进行预加固,机械成孔施工效率较高。为提高抗滑桩体稳定性,在距离桩顶1m和3m位置分别设置1孔锚索。桩顶往上按8m分级放坡,坡率为1:1.0,坡顶上第1级边坡采用锚索框架+植生袋绿化加固。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;采用不平衡推力法(隐式),按最大下滑力搜索最薄弱滑面,经计算后,边坡加固前的天然工况下的稳定性系数为1.07。暴雨工况下的稳定性系数为0.98,均不满足规范要求。经过抗滑桩(桩身抗滑承载力为3000kN)加固后的天然工况下的稳定性系数为1.39,暴雨工况下的稳定性系数达1.18,满足规范要求,边坡的防护方案可行。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419698900875.png" alt="image.png" width="501" height="268" style="width: 501px; height: 268px;"/></p><p style="text-align: center;">方案三典型设计图</p><p>&nbsp; &nbsp; &nbsp; &nbsp;由于圆形抗滑桩土坡模块计算与方形桩板墙一致,故这里仅对圆形抗滑桩验算部分进行展示。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419738319154.png" alt="image.png"/></p><p style="text-align: center;">截面配筋验算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1697419748654329.png" alt="image.png"/></p><p style="text-align: center;">挡板配筋验算</p><p><strong>四、总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;考虑到项目缺土,以及综合考虑造价等因素,最终方案选择方案1:分级开挖+分级加固方案,并且要求现场开挖一级、防护一级。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;结合GEO5土质边坡稳定分析、抗滑桩验算模块,对中部地区某处高边坡变更设计进行了分析和计算,很好的解决了设计问题,为设计方案提供了依据,取得满意结果,最终方案已指导现场顺利施工。</p>

GEO5土质边坡模块:指定滑面参数+水下参数折减

库仑产品库仑赵 发表了文章 • 0 个评论 • 1328 次浏览 • 2023-07-21 10:13 • 来自相关话题

一、指定滑面参数        通常情况下,软件在进行稳定性计算的时候,软件会自动识别滑面穿过的各地层,并提取各层的强度参数进行计算。       如果存在区别于各层性质的软弱滑带,或者工程师通过参数反演得出了滑带的反算参数,需要单独对滑面进行参数定义时,提供两种思路:方法1:在模型中单独建立滑带(下图紫色示意)       定义好滑带后,在【岩土材料】中单独建立一种名为“滑带”的材料,并输入滑带强度参数,之后将该材料指定给滑带即可。方法2:给滑面直接指定参数操作步骤如下:(1)【工况1】→【分析设置】→勾选【为每段折线滑面输入不同的岩土参数】(2) 【分析】→【滑面参数】(3)总界面左下角出现滑面参数定义界面,在表格单元格上①【双击】,弹出②【参数输入框】。各段滑面定义完成后,点击③【返回分析界面】       完成上述步骤后,软件在稳定性分析时将不再根据滑面穿过的实际地层进行参数选择,而是直接采用用户指定的滑面参数。二、水下参数折减      在涉及地下水或者降雨情况下,工程师需要对地下水位以下部分土层进行参数折减。具体操作步骤如下:(1)【工况1】→【分析设置】→勾选【为岩土材料地下水位部分输入不同的参数】(2)【工况1】→【岩土材料】,在折减后的界面部分输入水位以下的折减参数(3)【工况1】→【地下水】,进行地下水位的定义       这时软件在分析时,对地下水位以下部分采用折减后的参数。(注意:如果水位线在某地层内,水位处不用人为分层,如上图黄色地层,水位上下软件会自动进行识别,并给予相应状态的参数) 查看全部
<h3><strong><span style="color: #FF0000;">一、指定滑面参数</span></strong></h3><p>&nbsp; &nbsp; &nbsp; &nbsp; 通常情况下,软件在进行稳定性计算的时候,软件会自动识别滑面穿过的各地层,并提取各层的强度参数进行计算。</p><p><strong>&nbsp; &nbsp; &nbsp; &nbsp;<span style="color: #FF0000;">如果存在区别于各层性质的软弱滑带,或者工程师通过参数反演得出了滑带的反算参数,需要单独对滑面进行参数定义时</span></strong>,提供两种思路:</p><p><span style="color: #FF0000;"><strong>方法</strong>1</span>:<strong>在模型中单独建立滑带(下图紫色示意)</strong></p><p style="text-align: center;"><strong><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1689905095629158.png" alt="1.png"/></strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;定义好滑带后,在【岩土材料】中单独建立一种名为“滑带”的材料,并输入滑带强度参数,之后将该材料指定给滑带即可。</p><p><span style="color: #FF0000;"><strong>方法</strong><strong>2</strong></span><strong>:给滑面直接指定参数</strong></p><p><strong>操作步骤如下:</strong></p><p><strong>(1</strong><strong>)【工况1</strong><strong>】→【分析设置】→勾选【为每段折线滑面输入不同的岩土参数】</strong></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1689905209748465.png" alt="2.png"/></p><p><strong>(2</strong><strong>) </strong><strong>【分析】→【滑面参数】</strong></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1689905237911382.png" alt="3.png"/></p><p><strong>(3</strong><strong>)总界面左下角出现滑面参数定义界面,在表格单元格上①【双击】,弹出②【参数输入框】。各段滑面定义完成后,点击③【返回分析界面】</strong></p><p style="text-align: center;"><strong><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1689905310234316.png" alt="4.png"/></strong></p><p><strong>&nbsp; &nbsp; &nbsp; &nbsp;</strong>完成上述步骤后,软件在稳定性分析时将不再根据滑面穿过的实际地层进行参数选择,而是直接采用用户指定的滑面参数。</p><p><br/></p><h3><strong><span style="color: #FF0000;">二、水下参数折减</span></strong></h3><p>&nbsp; &nbsp; &nbsp; 在涉及地下水或者降雨情况下,工程师需要<strong><span style="color: #FF0000;">对地下水位以下部分土层进行参数折减</span></strong>。具体操作步骤如下:</p><p><strong>(1</strong><strong>)【工况1</strong><strong>】→【分析设置】→勾选【为岩土材料地下水位部分输入不同的参数】</strong></p><p style="text-align: center;"><strong><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1689905441371379.png" alt="1.png"/></strong></p><p><strong>(2</strong><strong>)【工况1</strong><strong>】→【岩土材料】,在折减后的界面部分输入水位以下的折减参数</strong></p><p style="text-align: center;"><strong><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1689905462777112.png" alt="2.png"/></strong></p><p><strong>(3</strong><strong>)【工况1</strong><strong>】→【地下水】,进行地下水位的定义</strong></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1689905480747297.png" alt="3.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;这时软件在分析时,对地下水位以下部分采用折减后的参数。(<span style="color: #FF0000;">注意:如果水位线在某地层内,水位处不用人为分层,如上图黄色地层,水位上下软件会自动进行识别,并给予相应状态的参数</span>)</p><p><br/></p><p><strong><br/></strong></p><p><strong><br/></strong></p><p><strong><br/></strong></p><p><br/></p><p><br/></p>

GEO5土坡模块网格搜索使用方法

库仑产品南京库仑张工 发表了文章 • 0 个评论 • 1291 次浏览 • 2023-02-22 11:23 • 来自相关话题

       在GEO5土坡模块中,滑面搜索方法包括自动搜索和网格搜索,其中自动搜索可以对圆弧滑动、折线滑动进行搜索计算,见文章GEO5「土质边坡稳定分析模块」中圆弧和折线滑面搜索教程,网格搜索则主要针对圆弧滑动。在GEO5 2023版当中,对网格搜索方法做了进一步的优化,本文将作简要介绍。1、网格参数设置       如上图所示,当用户选择网格搜索时,有7个参数可以设置,分别是δx(x方向圆心步长),δz(z方向圆心步长),δR(搜索半径步长),旋转角α以及nx(x方向的一侧网格数量),nz(z方向的一侧网格数量)和nR(半径数量)。       以上图为例,取nx=10,nz=10,nR=4,那么软件实际计算滑动面个数=(2*10+1)*(2*10+1)*4=1764个滑面,有的时候设置的圆心半径并不能和模型的地形相交,所以实际滑面个数略小于上值。2、2023版网格加密方法       当使用网格搜索最危险滑面时,一般操作方法是先选用粗网格,然后再加密网格,但在原来的版本中,加密得人工调整参数,且不能替换原有搜索结果。最新的GEO5 2023版本,增加了“加密网格”功能,点击后,软件默认按原有参数(x、z方向圆心步长及半径步长)的二分之一设置新的参数,新的搜索可以直接替换掉当前搜索结果,也可以保存到新的分析工况当中。       加密操作可以持续进行,比如四个工况可以按照x、z方向步长2m-1m-0.5m-0.25m不断加密的操作,半径步长类似。3、网格搜索的使用步骤(1)指定初始滑面:       跟自动搜索类似,网格搜索也需要指定初始滑面位置。初始指定的滑面位置不同,可能会出现搜索陷入局部极值的情况,但网格搜索可以通过由粗到细的过程避免初始滑面位置的影响。(2)加密网格:       在粗网格的基础上进行加密计算。(3)筛选滑动面:       网格加密到合适大小,最小稳定系数不再发生变化时,即可不用进一步加密网格。这时候会发现坡体内的滑动面有很多,而且大部分是大于设计安全系数的滑面,这部分滑面可以通过筛选的方法隐藏。选择界面上的扳手,点击后可以设置安全系数的最大值,比如设置为1.35。       之后,软件会自动剔除掉稳定系数大于1.35的滑面。 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp;在GEO5土坡模块中,滑面搜索方法包括自动搜索和网格搜索,其中自动搜索可以对圆弧滑动、折线滑动进行搜索计算,见文章<a href="https://wen.kulunsoft.com/arti ... BGEO5「土质边坡稳定分析模块」中圆弧和折线滑面搜索教程</a>,网格搜索则主要针对圆弧滑动。在GEO5 2023版当中,对网格搜索方法做了进一步的优化,本文将作简要介绍。</p><p>1、网格参数设置</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1705971793653601.png" alt="image.png" width="267" height="228" style="width: 267px; height: 228px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;如上图所示,当用户选择网格搜索时,有7个参数可以设置,分别是δx(x方向圆心步长),δz(z方向圆心步长),δR(搜索半径步长),旋转角α以及nx(x方向的一侧网格数量),nz(z方向的一侧网格数量)和nR(半径数量)。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;以上图为例,取nx=10,nz=10,nR=4,那么软件实际计算滑动面个数=(2*10+1)*(2*10+1)*4=1764个滑面,有的时候设置的圆心半径并不能和模型的地形相交,所以实际滑面个数略小于上值。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1705971814793654.png" alt="image.png" width="402" height="345" style="width: 402px; height: 345px;"/></p><p>2、2023版网格加密方法</p><p>&nbsp; &nbsp; &nbsp; &nbsp;当使用网格搜索最危险滑面时,一般操作方法是先选用粗网格,然后再加密网格,但在原来的版本中,加密得人工调整参数,且不能替换原有搜索结果。最新的GEO5 2023版本,增加了“加密网格”功能,点击后,软件默认按原有参数(x、z方向圆心步长及半径步长)的二分之一设置新的参数,新的搜索可以直接替换掉当前搜索结果,也可以保存到新的分析工况当中。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;加密操作可以持续进行,比如四个工况可以按照x、z方向步长2m-1m-0.5m-0.25m不断加密的操作,半径步长类似。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1705971832234711.png" alt="image.png" width="477" height="347" style="width: 477px; height: 347px;"/></p><p>3、网格搜索的使用步骤</p><p>(1)指定初始滑面:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;跟自动搜索类似,网格搜索也需要指定初始滑面位置。初始指定的滑面位置不同,可能会出现搜索陷入局部极值的情况,但网格搜索可以通过由粗到细的过程避免初始滑面位置的影响。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1705971851805073.png" alt="image.png" width="476" height="261" style="width: 476px; height: 261px;"/></p><p>(2)加密网格:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;在粗网格的基础上进行加密计算。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1705971875649347.png" alt="image.png" width="472" height="303" style="width: 472px; height: 303px;"/></p><p>(3)筛选滑动面:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;网格加密到合适大小,最小稳定系数不再发生变化时,即可不用进一步加密网格。这时候会发现坡体内的滑动面有很多,而且大部分是大于设计安全系数的滑面,这部分滑面可以通过筛选的方法隐藏。</p><p>选择界面上的扳手,点击后可以设置安全系数的最大值,比如设置为1.35。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1705971896898080.png" alt="image.png" width="261" height="325" style="width: 261px; height: 325px;"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1705971926813376.png" alt="image.png" width="455" height="284" style="width: 455px; height: 284px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;之后,软件会自动剔除掉稳定系数大于1.35的滑面。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1705971947901557.png" alt="image.png"/></p><p><br/></p>

不平衡推力法(隐式)手算与GEO5计算结果对比

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 3022 次浏览 • 2023-01-05 15:28 • 来自相关话题

1、不平衡推力法隐式解       根据《建筑边坡工程技术规范》(GB50330-2013)附录A,不平衡推力法(传递系数法)隐式解的计算公式如下:其中:       Pn为第n条块单位宽度剩余下滑力(kN/m),实际就是位于剪出口位置的条块,Pn=0是用于计算边坡当前稳定系数的条件,当要计算剩余下滑力或滑坡推力时,Pn需要计算得到;       Pi为第i计算条块与第i+1计算条块单位宽度剩余下滑力(kN/m),需要注意的是,当Pi<0(i<n)时,由于条块不能传递拉力,Pi=0;       Ti为第i计算条块单位宽度重力及其他外力引起的下滑力(kN/m);       Ri为第i计算条块单位宽度重力及其他外力引起的抗滑力(kN/m);       Φi-1为第i-1计算条块对第i计算条块的传递系数。2、隐式解利用excel手算方法       在上述计算公式中,实际还缺少一个稳定系数,也就是Fs的计算,Fs可以用总的抗滑力比上总的下滑力得到,但是因为在计算过程中,Fs作为变量参与了传递系数的计算,所以无法给出Fs的解析解,只能通过迭代计算的方式计算当Pi=0条件下的稳定系数Fs。       利用excel可以实现迭代计算出Fs,常用的方式一种是试算,另一种是简单编制一个VBA的代码,通过运行宏计算,但是网上分享的一些计算表格,有的算法简单,计算很耗时,有的无法在其他电脑运行宏,所以这里借本篇文章分项另一种迭代计算Fs的方法,即采用excel自带的规划求解功能(Solver)。       将稳定系数定义为可变单元格,将剪出口位置条块的剩余下滑力Pn定义为目标单元格,目标值为0,另外约束稳定系数大于0。点击求解之后能快速的计算出隐士解的稳定系数。(如何调出excel的规划求解功能可百度查看)       在求解出稳定系数之后,如果需要再计算剩余下滑力,那么将上述公式中的稳定系数Fs替换为设计安全系数Fst,比如建筑边坡天然工况的1.35即可。3、手算和GEO5计算结果对比       某路堑边坡高约44m,采用不平衡推力法隐式解计算边坡安全系数,以及在设计安全系数1.35情况下的剩余下滑力,边坡模型如下:       滑面为折线,总共7个条块,采用excel规划求解,计算结果如下:       得到稳定系数为1.036,采用GEO5计算,得到稳定系数为1.038。       当设计安全系数为1.35时,手算和GEO5计算得到的每个条块剩余下滑力的大小对比如下:         从上面结果看出大部分条块的误差低于千分之一,由此可见GEO5计算不平衡推力法隐式解的结果和手算结果基本一致。本文涉及到的不平衡推力法通过规划求解计算安全系数的Excel表格如下,感兴趣的工程师可以自行下载。不平衡推力法隐式解安全系数计算.xlsx 查看全部
<p>1、不平衡推力法隐式解</p><p>&nbsp; &nbsp; &nbsp; &nbsp;根据《建筑边坡工程技术规范》(GB50330-2013)附录A,不平衡推力法(传递系数法)隐式解的计算公式如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672903264182163.png" alt="image.png" width="320" height="243" style="width: 320px; height: 243px;"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672903287257109.png" alt="image.png" width="377" height="146" style="width: 377px; height: 146px;"/></p><p>其中:</p><p>&nbsp; &nbsp; &nbsp; &nbsp;P<sub>n</sub>为第n条块单位宽度剩余下滑力(kN/m),实际就是位于剪出口位置的条块,P<sub>n</sub>=0是用于计算边坡当前稳定系数的条件,当要计算剩余下滑力或滑坡推力时,P<sub>n</sub>需要计算得到;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;P<sub>i</sub>为第i计算条块与第i+1计算条块单位宽度剩余下滑力(kN/m),需要注意的是,当P<sub>i</sub>&lt;0(i&lt;n)时,由于条块不能传递拉力,P<sub>i</sub>=0;</p><p>&nbsp; &nbsp; &nbsp; &nbsp;T<sub>i</sub>为第i计算条块单位宽度重力及其他外力引起的下滑力(kN/m);</p><p>&nbsp; &nbsp; &nbsp; &nbsp;R<sub>i</sub>为第i计算条块单位宽度重力及其他外力引起的抗滑力(kN/m);</p><p>&nbsp; &nbsp; &nbsp; &nbsp;Φ<sub>i-1</sub>为第i-1计算条块对第i计算条块的传递系数。</p><p>2、隐式解利用excel手算方法</p><p>&nbsp; &nbsp; &nbsp; &nbsp;在上述计算公式中,实际还缺少一个稳定系数,也就是Fs的计算,Fs可以用总的抗滑力比上总的下滑力得到,但是因为在计算过程中,Fs作为变量参与了传递系数的计算,所以无法给出Fs的解析解,只能通过迭代计算的方式计算当P<sub>i</sub>=0条件下的稳定系数Fs。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;利用excel可以实现迭代计算出Fs,常用的方式一种是试算,另一种是简单编制一个VBA的代码,通过运行宏计算,但是网上分享的一些计算表格,有的算法简单,计算很耗时,有的无法在其他电脑运行宏,所以这里借本篇文章分项另一种迭代计算Fs的方法,即采用excel自带的规划求解功能(Solver)。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;将稳定系数定义为可变单元格,将剪出口位置条块的剩余下滑力P<sub>n</sub>定义为目标单元格,目标值为0,另外约束稳定系数大于0。点击求解之后能快速的计算出隐士解的稳定系数。(如何调出excel的规划求解功能可百度查看)</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672903363561795.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;在求解出稳定系数之后,如果需要再计算剩余下滑力,那么将上述公式中的稳定系数Fs替换为设计安全系数Fst,比如建筑边坡天然工况的1.35即可。</p><p>3、手算和GEO5计算结果对比</p><p>&nbsp; &nbsp; &nbsp; &nbsp;某路堑边坡高约44m,采用不平衡推力法隐式解计算边坡安全系数,以及在设计安全系数1.35情况下的剩余下滑力,边坡模型如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672903411530771.png" alt="image.png" width="425" height="282" style="width: 425px; height: 282px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;滑面为折线,总共7个条块,采用excel规划求解,计算结果如下:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672903448147467.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;得到稳定系数为1.036,采用GEO5计算,得到稳定系数为1.038。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672903468140309.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;当设计安全系数为1.35时,手算和GEO5计算得到的每个条块剩余下滑力的大小对比如下:</p><p style="text-align: center;">&nbsp;&nbsp;<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1672903680856742.png" alt="image.png" width="334" height="167" style="width: 334px; height: 167px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;从上面结果看出大部分条块的误差低于千分之一,由此可见GEO5计算不平衡推力法隐式解的结果和手算结果基本一致。</p><p><br/></p><p>本文涉及到的不平衡推力法通过规划求解计算安全系数的Excel表格如下,感兴趣的工程师可以自行下载。</p><p style="line-height: 16px;"><img style="vertical-align: middle; margin-right: 2px;" src="https://wen.kulunsoft.com/stat ... t%3Ba style="font-size:12px; color:#0066cc;" href="https://wen.kulunsoft.com/uplo ... ot%3B title="不平衡推力法隐式解安全系数计算.xlsx">不平衡推力法隐式解安全系数计算.xlsx</a></p><p><br/></p>

GEO5黄土地区高边坡支挡结构设计案例

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 1284 次浏览 • 2022-11-03 12:07 • 来自相关话题

1.项目简介       西北某路基高边坡,先挖后填,挖方边坡直接削掉坡顶,然后再一侧冲沟中回填以扩大路基宽度,填方边坡高度大于40m,场地出露地层以马兰黄土、离石黄土和古土壤为主。       填方边坡采用抗滑桩+加筋土联合支挡,抗滑桩尺寸按3.5m*2.5m矩形桩设计,桩长35m,其中悬臂段约11m,桩间距4m,桩身最大抗滑承载能力Vu取7200kN。上部加筋土边坡按四级台阶放坡,总体坡率近1:1.1,每级台阶边坡高度8m~10m。筋材采用设计抗拉强度25kN/m的筋带,筋带布置间距0.4m,最长敷设长度49m。图1:原始边坡模型       采用GEO5土坡模块分析,可以考虑抗滑桩和加筋土联合支挡的作用,通过多工况分析比对明确支护设计思路。2.岩土材料参数3、各工况稳定性分析图2:边坡开挖后整体稳定性计算图3:未加任何支护填方边坡整体稳定性计算图4:加抗滑桩后填方边坡整体稳定性计算图5:抗滑桩+加筋土填方边坡整体稳定性计算4、分析结论        原始边坡开挖后整体稳定性满足要求,但在一侧填方后边坡稳定性较差。通过同一滑动面的整体稳定性分析可以得到:在填方后,边坡整体稳定性很差,安全系数很低;在加上抗滑桩后,提高了整体安全性,但仍处于不稳定状态;当在填土中添加筋带后,最终计算安全系数达到设计安全系数要求。 查看全部
<p>1.项目简介</p><p>&nbsp; &nbsp; &nbsp; &nbsp;西北某路基高边坡,先挖后填,挖方边坡直接削掉坡顶,然后再一侧冲沟中回填以扩大路基宽度,填方边坡高度大于40m,场地出露地层以马兰黄土、离石黄土和古土壤为主。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;填方边坡采用抗滑桩+加筋土联合支挡,抗滑桩尺寸按3.5m*2.5m矩形桩设计,桩长35m,其中悬臂段约11m,桩间距4m,桩身最大抗滑承载能力Vu取7200kN。上部加筋土边坡按四级台阶放坡,总体坡率近1:1.1,每级台阶边坡高度8m~10m。筋材采用设计抗拉强度25kN/m的筋带,筋带布置间距0.4m,最长敷设长度49m。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667448243702848.png" alt="image.png" width="446" height="185" style="width: 446px; height: 185px;"/></p><p style="text-align: center;">图1:原始边坡模型</p><p>&nbsp; &nbsp; &nbsp; &nbsp;采用GEO5土坡模块分析,可以考虑抗滑桩和加筋土联合支挡的作用,通过多工况分析比对明确支护设计思路。</p><p>2.岩土材料参数</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667448283360028.png" alt="image.png" width="445" height="184" style="width: 445px; height: 184px;"/></p><p>3、各工况稳定性分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667448325573620.png" alt="image.png" width="460" height="218" style="width: 460px; height: 218px;"/></p><p style="text-align: center;">图2:边坡开挖后整体稳定性计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667448358508604.png" alt="image.png" width="469" height="197" style="width: 469px; height: 197px;"/></p><p style="text-align: center;">图3:未加任何支护填方边坡整体稳定性计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667448377447822.png" alt="image.png" width="468" height="187" style="width: 468px; height: 187px;"/></p><p style="text-align: center;">图4:加抗滑桩后填方边坡整体稳定性计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667448410460726.png" alt="image.png" width="482" height="175" style="width: 482px; height: 175px;"/></p><p style="text-align: center;">图5:抗滑桩+加筋土填方边坡整体稳定性计算</p><p>4、分析结论</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 原始边坡开挖后整体稳定性满足要求,但在一侧填方后边坡稳定性较差。通过同一滑动面的整体稳定性分析可以得到:在填方后,边坡整体稳定性很差,安全系数很低;在加上抗滑桩后,提高了整体安全性,但仍处于不稳定状态;当在填土中添加筋带后,最终计算安全系数达到设计安全系数要求。</p>

GEO5某园区高填方边坡支挡结构设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 1174 次浏览 • 2022-11-03 11:31 • 来自相关话题

1.项目简介       某园区东南侧为早期的开挖边坡,边坡高30m,地层以粉质黏土和黏土为主,局部区域地表为素填土。因场地功能设计要求,需在原多级开挖边坡基础上,重新回填,形成两级回填边坡。       回填边坡采用桩板墙+锚索设计,上台阶桩长30m,设置5道锚索,锚索预应力分别为180kN、200kN、200kN、200kN、200kN;下台阶桩长30m,设置7道锚索,锚索预应力分别为300kN、400kN、400kN、450kN、450kN、500kN、500kN。       采用GEO5土坡模块分析,可以考虑抗滑桩和锚索联合支挡的作用,通过多工况分析比对明确支护设计思路。2.岩土材料参数3、各工况稳定性分析图1:回填边坡未加任何支挡时整体稳定性计算图2:上下台阶加上抗滑桩后整体稳定性计算图3:仅上台阶加上锚索后整体稳定性计算图4:上下台阶均加上锚索后整体稳定性计算4、分析结论       通过同一滑动面的整体稳定性分析可以得到:在填方后,边坡整体稳定性很差,安全系数很低;在加上抗滑桩后,提高了整体安全性,但仍处于不稳定状态;当上下台阶均施加多排锚索之后,最终计算安全系数达到设计安全系数要求。 查看全部
<p>1.项目简介</p><p>&nbsp; &nbsp; &nbsp; &nbsp;某园区东南侧为早期的开挖边坡,边坡高30m,地层以粉质黏土和黏土为主,局部区域地表为素填土。因场地功能设计要求,需在原多级开挖边坡基础上,重新回填,形成两级回填边坡。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;回填边坡采用桩板墙+锚索设计,上台阶桩长30m,设置5道锚索,锚索预应力分别为180kN、200kN、200kN、200kN、200kN;下台阶桩长30m,设置7道锚索,锚索预应力分别为300kN、400kN、400kN、450kN、450kN、500kN、500kN。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;采用GEO5土坡模块分析,可以考虑抗滑桩和锚索联合支挡的作用,通过多工况分析比对明确支护设计思路。</p><p>2.岩土材料参数</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667446042425610.png" alt="image.png"/></p><p>3、各工况稳定性分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667446075651558.png" alt="image.png" width="327" height="269" style="width: 327px; height: 269px;"/></p><p style="text-align: center;">图1:回填边坡未加任何支挡时整体稳定性计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667446130514692.png" alt="image.png" width="323" height="270" style="width: 323px; height: 270px;"/></p><p style="text-align: center;">图2:上下台阶加上抗滑桩后整体稳定性计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667446161475245.png" alt="image.png" width="348" height="259" style="width: 348px; height: 259px;"/></p><p style="text-align: center;">图3:仅上台阶加上锚索后整体稳定性计算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667446201745636.png" alt="image.png" width="351" height="263" style="width: 351px; height: 263px;"/></p><p style="text-align: center;">图4:上下台阶均加上锚索后整体稳定性计算</p><p>4、分析结论</p><p>&nbsp; &nbsp; &nbsp; &nbsp;通过同一滑动面的整体稳定性分析可以得到:在填方后,边坡整体稳定性很差,安全系数很低;在加上抗滑桩后,提高了整体安全性,但仍处于不稳定状态;当上下台阶均施加多排锚索之后,最终计算安全系数达到设计安全系数要求。</p><p><br/></p>

GEO5某中学运动场边坡稳定性分析

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 1055 次浏览 • 2022-11-03 11:24 • 来自相关话题

1、项目概况       该中学拟建的运动场靠山侧为斜坡地貌,斜坡呈台阶状,地势总体上北高南低,地表为耕地及杂草。根据设计规划,拟建场地按高程742.00m,745.60m,748.75m场平后,北侧将形成台阶边坡。开挖后形成的人工边坡最高处约32m,最低处约3.5m,平均高度约16m。       场地出露地层,地表为人工填土,以耕土、碎石、建渣为主,其下为坡残积粉质黏土,主要出露于坡脚和缓坡平台。下部为基岩,呈强风化~中风化,节理裂隙较发育。       因项目涉及多级开挖边坡,既要分析天然边坡,也要分析不同开挖阶段的边坡稳定性,所以采用GEO5软件土坡模块,分工况计算各阶段的边坡稳定性。2、岩土材料参数3、各工况稳定性分析图1:天然边坡稳定性计算满足要求图2:一级台阶边坡开挖及支挡后稳定性分析图3:二级台阶边坡开挖及支挡后稳定性分析图4:三级台阶边坡开挖后稳定性分析图5:三级台阶边坡支护后稳定性分析4、分析结论       通过以上分析,可以发现该边坡在天然状况下处于稳定状态。因场地修筑,需要开挖边坡,在多级开挖过程中存在不同程度的稳定性不足的情况,通过在坡面添加锚索的方式使得边坡稳定性满足规范要求。 查看全部
<p>1、项目概况</p><p>&nbsp; &nbsp; &nbsp; &nbsp;该中学拟建的运动场靠山侧为斜坡地貌,斜坡呈台阶状,地势总体上北高南低,地表为耕地及杂草。根据设计规划,拟建场地按高程742.00m,745.60m,748.75m场平后,北侧将形成台阶边坡。开挖后形成的人工边坡最高处约32m,最低处约3.5m,平均高度约16m。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;场地出露地层,地表为人工填土,以耕土、碎石、建渣为主,其下为坡残积粉质黏土,主要出露于坡脚和缓坡平台。下部为基岩,呈强风化~中风化,节理裂隙较发育。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;因项目涉及多级开挖边坡,既要分析天然边坡,也要分析不同开挖阶段的边坡稳定性,所以采用GEO5软件土坡模块,分工况计算各阶段的边坡稳定性。</p><p>2、岩土材料参数</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667445301319189.png" alt="image.png" width="483" height="322" style="width: 483px; height: 322px;"/></p><p>3、各工况稳定性分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667445326568926.png" alt="image.png" width="1" height="1" style="width: 1px; height: 1px;"/><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667445340217473.png" alt="image.png" width="357" height="327" style="width: 357px; height: 327px;"/></p><p style="text-align: center;">图1:天然边坡稳定性计算满足要求</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667445599989067.png" alt="image.png" width="329" height="305" style="width: 329px; height: 305px;"/></p><p style="text-align: center;">图2:一级台阶边坡开挖及支挡后稳定性分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667445636348445.png" alt="image.png" width="307" height="341" style="width: 307px; height: 341px;"/></p><p style="text-align: center;">图3:二级台阶边坡开挖及支挡后稳定性分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667445701580784.png" alt="image.png" width="338" height="361" style="width: 338px; height: 361px;"/></p><p style="text-align: center;">图4:三级台阶边坡开挖后稳定性分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1667445736107389.png" alt="image.png" width="314" height="387" style="width: 314px; height: 387px;"/></p><p style="text-align: center;">图5:三级台阶边坡支护后稳定性分析</p><p>4、分析结论</p><p>&nbsp; &nbsp; &nbsp; &nbsp;通过以上分析,可以发现该边坡在天然状况下处于稳定状态。因场地修筑,需要开挖边坡,在多级开挖过程中存在不同程度的稳定性不足的情况,通过在坡面添加锚索的方式使得边坡稳定性满足规范要求。</p><p><br/></p>

某水库黏土心墙堆石坝

库仑产品库仑刘工 发表了文章 • 0 个评论 • 2199 次浏览 • 2021-04-18 23:44 • 来自相关话题

某水库黏土心墙堆石坝1工程概况大坝坝址选在金沙江水系二级支流掌鸠河上游峡谷河段内,水库总库容484万m3。工程属Ⅱ等大(2)型水库工程,各建筑物均按2级建筑物设计。设计洪水标准为500年一遇,校核洪水标准为5000年一遇。2工程地质坝址河床为不对称的U形谷,岸坡陡缓变化大。坝址出露中生代白垩系上统马头山组(K2m)砂岩、白云岩、泥岩、页岩地层,其间有燕山期侵入岩脉穿插。岩层倾向大坝上游偏左岸,倾角10°~16°。坝址发育顺河向、横河向两组结构面,规模较大的有F2断层,从右岸斜穿坝址,断层破碎带宽18~30m,对坝基变形和防渗均有不利影响。两岸卸荷作用强烈。河床覆盖层最厚5.9m,两岸坡脚处有崩塌堆积的孤石、块石夹碎石土、壤土,最大厚度为8.4m。坝址微风化岩体具有弱透水性,可作为大坝防渗的相对不透水层。库坝区抗震设防烈度为7度。3结构设计工程枢纽由大坝、泄洪隧洞、溢洪道、引水隧洞等建筑物组成。大坝为黏土心墙堆石坝,最大坝高77m,坝顶长度249.5m,坝顶宽度10m,坝顶高程2095.00m,上游坝坡在2057.00m高程以上为1:1.8,以下为1:2.2,在高程2057.00m处设戗台,宽24.6m。下游坝坡在高程2080.00m、2063.00m、2042.00m处都设置有3m宽的戗道;高程2063.00m以上坝坡为1:1.75,以下坡度为1:1.85。坝壳堆石料,为弱风化石英砂岩、角砾岩、白云岩,强度较高,对岩体中夹有泥岩、页岩及泥质粉砂岩软岩互层,作为堆石料中的细粒料填充。下游设置反滤层两层,厚度为3m。上游坝壳采用堆石填筑,下游高程2042.00~2061.00m之间坝壳,采用风化堆石填筑,其他部位采用堆石填筑。对基面中的深潭、狭沟、充泥大裂隙、溶蚀洞穴等进行掏挖,而后回填混凝土。F2断层及岩脉蚀变带做混凝土塞置换,并采取了深孔固结灌浆和3排帷幕。盖板固结灌浆孔距、排距均为5m,孔入岩深度为5m。控制标准为透水率q≤5Lu,固结灌浆压力为0.4MPa。水库防渗体系由黏土心墙和基础帷幕灌浆构成。心墙防渗体顶高程高于校核洪水位0.42m,顶宽3m,上、下坡均为1:0.25,底部设置1m厚的钢筋混凝土C20盖板。帷幕线沿心墙轴线布设,左岸坝肩向山里延伸50m,右岸坝肩向山里延伸16m,帷幕线水平全长316m。帷幕灌浆孔布设两排,排距1.4m,孔距2m。防渗帷幕为接地式,灌浆孔深入相对隔水层(q≤3Lu)3~5m。帷幕灌浆质量标准透水率q≤3Lu。黏土心墙上游设置两层反滤层,厚度为2m,下游设置两层反滤层,厚度为3m。反滤料采用饱和抗压强度大于60MPa、软化系数大于0.65的弱风化白云质石英砂岩加工。心墙防渗料粒径d<0.075mm的颗粒含量为40%~85%,I区反滤层的用料取值范围:0.15mm≤D15≤0.5mm、2.8mm≤D60≤6.8mm、9mm≤D90≤20mm;Ⅱ区反滤层的用料设计取值范围:2.5mm≤D15≤8.5mm、18mm≤D60≤40mm、40mm≤D90≤80mm。通过试验论证,I区反滤料中粒径d<0.075mm的颗粒含量设计控制在8%内,渗透系数k<1x10-3cm/s。工程的设计特点是采用爆炸振密方法处理坝基,河床表层砂的平均干密度达1.55g/cm3,孔隙比0.7,相对密度0.68,效果较好。4主要工程量大坝主要工程量:坝体堆石体69.07万m2;I区反滤料为5.77万m3;Ⅱ区反滤料为5.79万m2;黏土心墙20.16万m3;块石护坡1.2万m2;大坝总填筑119.76万m3;帷幕灌浆1.77万m。5分析结果校核洪水位渗流分析结果图设计洪水位渗流分析结果图正常蓄水位渗流分析结果图上游边坡稳定性分析结果图下游边坡稳定性分析结果图地震工况上游边坡分析结果图地震工况下游边坡分析结果图 查看全部
<p style="text-align: center;"><strong>某水库黏土心墙堆石坝</strong></p><p><strong>1</strong><strong>工程概况</strong></p><p>大坝坝址选在金沙江水系二级支流掌鸠河上游峡谷河段内,水库总库容484万m3。工程属Ⅱ等大(2)型水库工程,各建筑物均按2级建筑物设计。设计洪水标准为500年一遇,校核洪水标准为5000年一遇。</p><p><strong>2</strong><strong>工程地质</strong></p><p>坝址河床为不对称的U形谷,岸坡陡缓变化大。坝址出露中生代白垩系上统马头山组(K2m)砂岩、白云岩、泥岩、页岩地层,其间有燕山期侵入岩脉穿插。岩层倾向大坝上游偏左岸,倾角10°~16°。坝址发育顺河向、横河向两组结构面,规模较大的有F2断层,从右岸斜穿坝址,断层破碎带宽18~30m,对坝基变形和防渗均有不利影响。两岸卸荷作用强烈。河床覆盖层最厚5.9m,两岸坡脚处有崩塌堆积的孤石、块石夹碎石土、壤土,最大厚度为8.4m。坝址微风化岩体具有弱透水性,可作为大坝防渗的相对不透水层。</p><p>库坝区抗震设防烈度为7度。</p><p><strong>3</strong><strong>结构设计</strong></p><p>工程枢纽由大坝、泄洪隧洞、溢洪道、引水隧洞等建筑物组成。</p><p>大坝为黏土心墙堆石坝,最大坝高77m,坝顶长度249.5m,坝顶宽度10m,坝顶高程2095.00m,上游坝坡在2057.00m高程以上为1:1.8,以下为1:2.2,在高程2057.00m处设戗台,宽24.6m。下游坝坡在高程2080.00m、2063.00m、2042.00m处都设置有3m宽的戗道;高程2063.00m以上坝坡为1:1.75,以下坡度为1:1.85。</p><p>坝壳堆石料,为弱风化石英砂岩、角砾岩、白云岩,强度较高,对岩体中夹有泥岩、页岩及泥质粉砂岩软岩互层,作为堆石料中的细粒料填充。下游设置反滤层两层,厚度为3m。上游坝壳采用堆石填筑,下游高程2042.00~2061.00m之间坝壳,采用风化堆石填筑,其他部位采用堆石填筑。</p><p>对基面中的深潭、狭沟、充泥大裂隙、溶蚀洞穴等进行掏挖,而后回填混凝土。F2断层及岩脉蚀变带做混凝土塞置换,并采取了深孔固结灌浆和3排帷幕。</p><p>盖板固结灌浆孔距、排距均为5m,孔入岩深度为5m。控制标准为透水率q≤5Lu,固结灌浆压力为0.4MPa。</p><p>水库防渗体系由黏土心墙和基础帷幕灌浆构成。心墙防渗体顶高程高于校核洪水位0.42m,顶宽3m,上、下坡均为1:0.25,底部设置1m厚的钢筋混凝土C20盖板。帷幕线沿心墙轴线布设,左岸坝肩向山里延伸50m,右岸坝肩向山里延伸16m,帷幕线水平全长316m。帷幕灌浆孔布设两排,排距1.4m,孔距2m。防渗帷幕为接地式,灌浆孔深入相对隔水层(q≤3Lu)3~5m。帷幕灌浆质量标准透水率q≤3Lu。</p><p>黏土心墙上游设置两层反滤层,厚度为2m,下游设置两层反滤层,厚度为3m。反滤料采用饱和抗压强度大于60MPa、软化系数大于0.65的弱风化白云质石英砂岩加工。心墙防渗料粒径d&lt;0.075mm的颗粒含量为40%~85%,I区反滤层的用料取值范围:0.15mm≤D15≤0.5mm、2.8mm≤D60≤6.8mm、9mm≤D90≤20mm;Ⅱ区反滤层的用料设计取值范围:2.5mm≤D15≤8.5mm、18mm≤D60≤40mm、40mm≤D90≤80mm。通过试验论证,I区反滤料中粒径d&lt;0.075mm的颗粒含量设计控制在8%内,渗透系数k&lt;1x10-3cm/s。</p><p>工程的设计特点是采用爆炸振密方法处理坝基,河床表层砂的平均干密度达1.55g/cm3,孔隙比0.7,相对密度0.68,效果较好。<br/></p><p><strong>4</strong><strong>主要工程量</strong></p><p>大坝主要工程量:坝体堆石体69.07万m2;I区反滤料为5.77万m3;Ⅱ区反滤料为5.79万m2;黏土心墙20.16万m3;块石护坡1.2万m2;大坝总填筑119.76万m3;帷幕灌浆1.77万m。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759684351343.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759726937934.png" alt="image.png"/><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759707340821.png" alt="image.png"/><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759715237171.png" alt="image.png"/></p><p><strong>5分析结果</strong></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618760151792282.png" alt="image.png" style="text-align: center; white-space: normal;"/></p><p style="text-align: center;">校核洪水位渗流分析结果图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618760169827273.png" alt="image.png" style="text-align: center; white-space: normal;"/></p><p style="text-align: center;">设计洪水位渗流分析结果图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618760206842299.png" alt="image.png" style="text-align: center; white-space: normal;"/></p><p style="text-align: center;">正常蓄水位渗流分析结果图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759816263154.png" alt="image.png"/></p><p style="text-align: center;">上游边坡稳定性分析结果图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759840128851.png" alt="image.png"/></p><p style="text-align: center;">下游边坡稳定性分析结果图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759871138722.png" alt="image.png"/></p><p style="text-align: center;">地震工况上游边坡分析结果图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759891996630.png" alt="image.png"/></p><p style="text-align: center;">地震工况下游边坡分析结果图</p><p><br/></p>

“土层节理”在GEO5边坡稳定性分析中的作用

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 3039 次浏览 • 2021-04-06 15:49 • 来自相关话题

        在GEO5土质边坡稳定性分析模块当中,我们一般都是通过定义不同材料的参数,然后指定到相应的区域,当滑面穿过某个区域时,滑面计算时所采用的的参数则按照相关区域取值。这种方式对于均质土坡或者没有明显滑动面的边坡来说比较方便,但对于有明确的软弱带的边坡或者滑面参数不同于周围岩土体的时候,则需要工程师单独定义出滑带,参考指定边坡滑面参数说明,这种方式稍微拐了个弯,不如直接定义滑面参数方便。所以经常有工程师询问什么时候添加直接指定滑面参数的功能,这个我们已经列入开发计划,但在落地之前,其实大家可以通过“土层节理”选项来实现相同的功能。1、“土层节理”的输入方法        在定义岩土材料参数界面的下方,选择土层节理后面的复选框为考虑,然后输入节理的起始倾角、终止倾角,以及结构面上的内摩擦角和黏聚力,如下图: 图1:GEO5中节理参数的输入2、节理起始和终止倾角输入的注意事项        起始倾角和终止倾角可输入的值均在[-90°,90°]内,但需要注意的是,终止倾角的值应始终不小于起始倾角,比如起始倾角输-10°,终止倾角输5°,这是可以的,但如果反过来起始倾角输5°,终止倾角输-10°,那么软件将不会考虑节理参数对滑面参数的影响。       另外,输入倾角的正负跟滑动方向相关,当节理(或者滑面)倾向跟坡面倾向相同时输入正值,当节理(或者滑面)倾向跟坡面倾向相反时输入负值,如下示意:图2:滑动方向向左时的倾角正负判定图3:滑动方向向右时的倾角正负判定3、节理参数的作用        工程师可以单独的为每一种材料都指定一种节理参数,也可以所有材料指定相同的节理参数,或者只考虑某种或某几种材料存在节理,多种方式都行。当用户定义了节理参数之后,如果某一滑面段的坡度位于区间[节理起始倾角,节理终止倾角]内,那么这部分条块计算时会使用节理参数作为滑动面的参数,如果滑面倾角位于区间以外,则按照实际材料给定的抗剪强度指标取值计算。        如果已知滑面参数,那么最简单的方式就是给所有的材料都指定相同的节理参数,输入[-90°,90°],然后输入滑面内摩擦角和黏聚力,最终计算时,滑动面参数则按照给定节理参数计算,这样就不用再单独勾勒出一层软弱面然后赋值了。 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp; 在GEO5土质边坡稳定性分析模块当中,我们一般都是通过定义不同材料的参数,然后指定到相应的区域,当滑面穿过某个区域时,滑面计算时所采用的的参数则按照相关区域取值。这种方式对于均质土坡或者没有明显滑动面的边坡来说比较方便,但对于有明确的软弱带的边坡或者滑面参数不同于周围岩土体的时候,则需要工程师单独定义出滑带,参考<a href="https://wen.kulunsoft.com/article/372">指定边坡滑面参数说明</a>,这种方式稍微拐了个弯,不如直接定义滑面参数方便。所以经常有工程师询问什么时候添加直接指定滑面参数的功能,这个我们已经列入开发计划,但在落地之前,其实大家可以通过“土层节理”选项来实现相同的功能。</p><p><strong>1、“土层节理”的输入方法</strong></p><p><strong>&nbsp; &nbsp; &nbsp; &nbsp; </strong>在定义岩土材料参数界面的下方,选择土层节理后面的复选框为考虑,然后输入节理的起始倾角、终止倾角,以及结构面上的内摩擦角和黏聚力,如下图:</p><p style="text-align: center;">&nbsp;<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1617691225917867.png" alt="image.png" width="346" height="176" style="width: 346px; height: 176px;"/></p><p style="text-align: center;">图1:GEO5中节理参数的输入</p><p><strong>2、节理起始和终止倾角输入的注意事项</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 起始倾角和终止倾角可输入的值均在[-90°,90°]内,但需要注意的是,终止倾角的值应始终不小于起始倾角,比如起始倾角输-10°,终止倾角输5°,这是可以的,但如果反过来起始倾角输5°,终止倾角输-10°,那么软件将不会考虑节理参数对滑面参数的影响。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;另外,输入倾角的正负跟滑动方向相关,当节理(或者滑面)倾向跟坡面倾向相同时输入正值,当</p><p>节理(或者滑面)倾向跟坡面倾向相反时输入负值,如下示意:</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1617693106679592.png" alt="image.png"/></p><p style="text-align: center;">图2:滑动方向向左时的倾角正负判定</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1617693122901229.png" alt="image.png"/></p><p style="text-align: center;">图3:滑动方向向右时的倾角正负判定</p><p><strong>3、节理参数的作用</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 工程师可以单独的为每一种材料都指定一种节理参数,也可以所有材料指定相同的节理参数,或者只考虑某种或某几种材料存在节理,多种方式都行。当用户定义了节理参数之后,如果某一滑面段的坡度位于区间[节理起始倾角,节理终止倾角]内,那么这部分条块计算时会使用节理参数作为滑动面的参数,如果滑面倾角位于区间以外,则按照实际材料给定的抗剪强度指标取值计算。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 如果已知滑面参数,那么最简单的方式就是给所有的材料都指定相同的节理参数,输入[-90°,90°],然后输入滑面内摩擦角和黏聚力,最终计算时,滑动面参数则按照给定节理参数计算,这样就不用再单独勾勒出一层软弱面然后赋值了。</p>

GEO5某库岸边坡塌滑治理设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 2987 次浏览 • 2020-11-11 17:22 • 来自相关话题

项目名称:某库岸边坡塌滑治理设计使用软件:GEO5土质边坡稳定性分析、GEO5抗滑桩设计、GEO5群桩设计、GEO5微型桩设计项目背景:该项目为某库岸路基边坡的应急治理,因滑坡作用,路面出现开裂和下沉现象。滑坡路段长约200m,上下高差约20m,坡体物质组成主要为粉质黏土及碎块石土,其中粉质黏土可塑至硬塑状,碎石土中密状为主,下伏基岩为泥岩和粉砂岩。经现场地质调查,滑坡周界清晰,整体呈圈椅状,滑动面位于土层中,未至岩土交界面。失稳原因与库岸河水长期冲刷坡脚及汛期降雨导致土体参数降低都有密切关系。采用GEO5可以分析原始边坡稳定性,水位骤降边坡稳定性,并对支护设计方案进行验算。软件优势:GEO5多个模块数据可以共享,对于复杂支护方式可以进行有针对性的验算。图1:场地原始边坡稳定性分析图2:护坡挡墙施工后边坡稳定性分析图3:挡墙+钢管桩支护方案验算图4:重力式挡墙分析验算图5:钢管群桩受力和变形分析图6:采用微型桩验算钢管桩的压屈稳定性和耦合截面承载力 查看全部
<p><strong>项目名称</strong>:某库岸边坡塌滑治理设计</p><p><strong>使用软件</strong>:GEO5土质边坡稳定性分析、GEO5抗滑桩设计、GEO5群桩设计、GEO5微型桩设计</p><p><strong>项目背景</strong>:该项目为某库岸路基边坡的应急治理,因滑坡作用,路面出现开裂和下沉现象。滑坡路段长约200m,上下高差约20m,坡体物质组成主要为粉质黏土及碎块石土,其中粉质黏土可塑至硬塑状,碎石土中密状为主,下伏基岩为泥岩和粉砂岩。经现场地质调查,滑坡周界清晰,整体呈圈椅状,滑动面位于土层中,未至岩土交界面。失稳原因与库岸河水长期冲刷坡脚及汛期降雨导致土体参数降低都有密切关系。采用GEO5可以分析原始边坡稳定性,水位骤降边坡稳定性,并对支护设计方案进行验算。</p><p><strong>软件优势</strong>:GEO5多个模块数据可以共享,对于复杂支护方式可以进行有针对性的验算。</p><p style="text-align:center"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1605084951434850.png" alt="image.png" width="441" height="348" style="width: 441px; height: 348px;"/></p><p style="text-align: center;">图1:场地原始边坡稳定性分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1605086302328519.png" alt="image.png" width="422" height="341" style="width: 422px; height: 341px;"/></p><p style="text-align: center;">图2:护坡挡墙施工后边坡稳定性分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1605086358964535.png" alt="image.png" width="412" height="306" style="width: 412px; height: 306px;"/></p><p style="text-align: center;">图3:挡墙+钢管桩支护方案验算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1605086399257491.png" alt="image.png" width="420" height="330" style="width: 420px; height: 330px;"/></p><p style="text-align: center;">图4:重力式挡墙分析验算</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1605086437307863.png" alt="image.png" width="450" height="339" style="width: 450px; height: 339px;"/></p><p style="text-align: center;">图5:钢管群桩受力和变形分析</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1605086502135820.png" alt="image.png" width="389" height="370" style="width: 389px; height: 370px;"/></p><p style="text-align: center;">图6:采用微型桩验算钢管桩的压屈稳定性和耦合截面承载力</p>

垃圾填埋场垃圾坝的稳定性分析计算

库仑产品库仑刘工 发表了文章 • 1 个评论 • 5281 次浏览 • 2020-10-23 23:02 • 来自相关话题

GEO5源文件:垃圾填埋场垃圾坝的稳定性计算分析.rar1.设计依据垃圾卫生填埋场在国内起步较晚,但近几年发展较快,目前垃圾坝设计主要依据《生活垃圾卫生填埋技术规范》及《生活垃圾卫生填埋场岩土工程技术规范》,同时参考现行水工行业结构设计等规范,如《碾压式土石坝设计规范》、《水工挡土墙设计规范》等。2.设计标准垃圾坝设计标准由于下游存在生产设备及生活管理区,垃圾坝失事将对生产设备和生活管理区带来严重损失,因此垃圾坝体建筑级别为I级。(安全系数取值来自于《生活垃圾卫生填埋技术规范》)3.垃圾土参数选取容重:该公式来自于《生活垃圾卫生填埋场岩土工程技术规范》,天然容重取13.9 kN/m3,饱和容重取15kN/m3。本工程坝前垃圾埋深约为12m,根据填埋工艺要求,垃圾土压实程度为中等,工程内摩擦角及粘聚力取较低值。垃圾土参数取值4.土工材料界面强度取值土工材料界面强度指标φ、c根据《生活垃圾卫生填埋场岩土工程技术规范》取值。稳定分析时,复合衬垫系统中土工材料强度指标取值宜符合下列要求:库区基底坡度大于10°区域采用残余强度指标,库区基底坡度小于10°区域采用其峰值强度指标。本填埋场土工材料界面为粗糙土工膜/GCL,故库区基底坡度大于10°区域取界面强度指标为:天然工况:内摩擦角φ取9°,黏聚力c取0kPa;饱和工况:内摩擦角φ取8°,黏聚力c取0kPa;库区基底坡度小于10°区域取界面强度指标为:天然工况:内摩擦角φ取22°,黏聚力c取0kPa;饱和工况:内摩擦角φ取21°,黏聚力c取0kPa。5.垃圾坝设计及验算垃圾坝尺寸图垃圾坝的主要作用在于维持垃圾堆体的稳定,因此垃圾土压力是垃圾坝最主要的荷载。目前一般采用传递系数法分析垃圾堆体边坡稳定性,如垃圾堆体满足自身稳定要求,则选取主动土压力作为垃圾坝计算外荷载;如垃圾堆体不满足自身稳定要求,则需比较剩余下滑力与主动土压力之间的大小,如剩余下滑力小于主动土压力,则选取主动土压力作为垃圾坝计算外荷载,反之则选取剩余下滑力作为垃圾坝计算外荷载。本案例采用主动土压力验算坝体的倾覆、滑移稳定性。GEO5对垃圾坝进行计算,分为三个工况,工况1为天然工况,工况2地震工况,工矿3为暴雨工况。6.垃圾堆体边坡稳定性计算本项目填埋场堆体的变形破坏主要是沿土工材料界面的滑动破坏,因此计算时按图示折线滑面计算垃圾堆体边坡的稳定性。GEO5边坡稳定性分三个工况进行验算,工况1为天然工况,设计安全系数取1.35;工况2为地震工况,设计安全系数取1.15;工况3为暴雨工况,设计安全系数取1.3。注:本案例源文件在附件中。 查看全部
<p>GEO5源文件:<img src="https://wen.kulunsoft.com/stat ... ot%3B style="vertical-align: middle; margin-right: 2px;"/><a href="https://wen.kulunsoft.com/uplo ... ot%3B title="垃圾填埋场垃圾坝的稳定性计算分析.rar" style="font-size: 12px; color: rgb(0, 102, 204);">垃圾填埋场垃圾坝的稳定性计算分析.rar</a></p><p><strong>1.设计依据</strong></p><p>垃圾卫生填埋场在国内起步较晚,但近几年发展较快,目前垃圾坝设计主要依据《生活垃圾卫生填埋技术规范》及《生活垃圾卫生填埋场岩土工程技术规范》,同时参考现行水工行业结构设计等规范,如《碾压式土石坝设计规范》、《水工挡土墙设计规范》等。</p><p><strong>2.设计标准</strong></p><p style="text-align: center;">垃圾坝设计标准</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1603465571482545.png" alt="image.png"/></p><blockquote><p style="text-align: left;">由于下游存在生产设备及生活管理区,垃圾坝失事将对生产设备和生活管理区带来严重损失,因此垃圾坝体建筑级别为I级。(安全系数取值来自于《生活垃圾卫生填埋技术规范》)<br/></p></blockquote><p><strong>3.垃圾土参数选取</strong></p><p><strong>容重:</strong></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1603465246618533.png" alt="image.png"/></p><p>该公式来自于《生活垃圾卫生填埋场岩土工程技术规范》,天然容重取13.9 kN/m3,饱和容重取15kN/m3。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1603465257537930.png" alt="image.png"/></p><p>本工程坝前垃圾埋深约为12m,根据填埋工艺要求,垃圾土压实程度为中等,工程内摩擦角及粘聚力取较低值。</p><p style="text-align: center;">垃圾土参数取值</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1603465592226972.png" alt="image.png"/></p><p><strong>4.土工材料界面强度取值</strong></p><p>土工材料界面强度指标φ、c根据《生活垃圾卫生填埋场岩土工程技术规范》取值。稳定分析时,复合衬垫系统中土工材料强度指标取值宜符合下列要求:库区基底坡度大于10°区域采用残余强度指标,库区基底坡度小于10°区域采用其峰值强度指标。本填埋场土工材料界面为粗糙土工膜/GCL,故库区基底坡度大于10°区域取界面强度指标为:天然工况:内摩擦角φ取9°,黏聚力c取0kPa;饱和工况:内摩擦角φ取8°,黏聚力c取0kPa;库区基底坡度小于10°区域取界面强度指标为:天然工况:内摩擦角φ取22°,黏聚力c取0kPa;饱和工况:内摩擦角φ取21°,黏聚力c取0kPa。</p><p><strong>5.垃圾坝设计及验算</strong></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1603465276673485.png" alt="image.png"/></p><p style="text-align: center;">垃圾坝尺寸图</p><p>垃圾坝的主要作用在于维持垃圾堆体的稳定,因此垃圾土压力是垃圾坝最主要的荷载。目前一般采用传递系数法分析垃圾堆体边坡稳定性,如垃圾堆体满足自身稳定要求,则选取主动土压力作为垃圾坝计算外荷载;如垃圾堆体不满足自身稳定要求,则需比较剩余下滑力与主动土压力之间的大小,如剩余下滑力小于主动土压力,则选取主动土压力作为垃圾坝计算外荷载,反之则选取剩余下滑力作为垃圾坝计算外荷载。本案例采用主动土压力验算坝体的倾覆、滑移稳定性。</p><p>GEO5对垃圾坝进行计算,分为三个工况,工况1为天然工况,工况2地震工况,工矿3为暴雨工况。</p><p><strong>6.垃圾堆体边坡稳定性计算</strong></p><p>本项目填埋场堆体的变形破坏主要是沿土工材料界面的滑动破坏,因此计算时按图示折线滑面计算垃圾堆体边坡的稳定性。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1603465287318177.png" alt="image.png"/></p><p>GEO5边坡稳定性分三个工况进行验算,工况1为天然工况,设计安全系数取1.35;工况2为地震工况,设计安全系数取1.15;工况3为暴雨工况,设计安全系数取1.3。</p><p>注:本案例源文件在附件中。</p><p><br/></p>