基坑开挖对周边地铁隧道的影响分析

这种类型的分析通常采用OptumG2来进行分析,对于设计部分,可以结合GEO5进行,建议看一下这个例题:GEO5+OptumG2在复杂工况基坑开挖中的应用

地铁隧道变形的分析很简单,首先需要获得地铁衬砌结构的参数,然后在G2中用板单元模拟衬砌,然后再对基坑部分进行开挖,即可得到地铁衬砌的变形。下面用一个简单的例子来说明这个过程。

工况1:地铁隧道开挖前地层的初始应力。此步分析地铁开挖前地层的初始状态,下图中为地层y方向上的应力。由于初始应力阶段土体变形始终为零,所以软件并为给出该工况阶段的位移情况。

blob.png

blob.png blob.png

工况2:对隧道开挖区域进行应力释放。对于隧道开挖的二维模拟,通常采用收敛约束法(详见例题:采用收敛约束法分析隧道)。下图为应力释放70%后地层的y向位移情况。

blob.png

blob.png blob.png

工况3:施加衬砌,并完全释放应力。收敛约束法的模拟还可以做的更细,例如可以考虑混凝土的成熟过程(详见例题:岩溶地质隧道开挖建模和分析)。下图为地层的y向位移情况、作用在衬砌上的围岩压力和衬砌弯矩。

blob.png

blob.png blob.png

blob.png blob.png

blob.png blob.png

进行上述三个工况分析的目的是为了得到初始的衬砌受力情况,以便于分析后期基坑开挖对衬砌受力改变的影响。

工况4:基坑开挖3m,设置支护桩,并设置「位移重置」选项为是。设置位移重置的目的是不考虑以前隧道开挖引起的土体变形,因为当前基坑开挖时可以认为曾经地铁隧道开挖时的土体变形已经完成,现在不再考虑地铁隧道开挖时的位移。下图为土层x方向位移(水平位移)和桩、隧道衬砌的位移情况。

blob.png

blob.png

blob.png blob.png

blob.png blob.png

工况4:基坑开挖6m,并施加第一道内支撑。在G2中施加内支撑的方法有很多,请参考:案例15:内支撑板桩墙的稳定性 和 案例68:基坑开挖-内支撑支护 。下图为支护结构和衬砌的位移与弯矩分布情况。注意需要把位移重置设置为「否」。

blob.png

blob.png

blob.png blob.png

blob.png blob.png

工况5:基坑开挖9m,并施加第二道内支撑。

blob.png

工况6:基坑开挖12m,并施加第三道内支撑,且预应力为1000kN。

blob.png

blob.png blob.png

工况7:基坑开挖15m,并施加第四道内支撑。

blob.png

工况8:基坑开挖18m,并施加第五道内支撑,且预应力为1000kN。

blob.png

工况9:基坑开挖21m,并施加第六到内支撑。下图为最终的支护结构和衬砌的位移与弯矩情况。

blob.png

blob.png blob.png

blob.png blob.png

当然,还可以结合G2的极限分析方法计算和考虑复杂的情况,从多个角度考虑基坑开挖对地铁隧道可能造成的影响。关于G2在极限分析方面的应用,请查看:入门教程(上)

演示案例源文件:基坑开挖对隧道的影响.zip

0 个评论

要回答文章请先登录注册