渗流分析案例

渗流分析案例

某水库黏土心墙堆石坝

库仑产品库仑刘工 发表了文章 • 0 个评论 • 2168 次浏览 • 2021-04-18 23:44 • 来自相关话题

某水库黏土心墙堆石坝1工程概况大坝坝址选在金沙江水系二级支流掌鸠河上游峡谷河段内,水库总库容484万m3。工程属Ⅱ等大(2)型水库工程,各建筑物均按2级建筑物设计。设计洪水标准为500年一遇,校核洪水标准为5000年一遇。2工程地质坝址河床为不对称的U形谷,岸坡陡缓变化大。坝址出露中生代白垩系上统马头山组(K2m)砂岩、白云岩、泥岩、页岩地层,其间有燕山期侵入岩脉穿插。岩层倾向大坝上游偏左岸,倾角10°~16°。坝址发育顺河向、横河向两组结构面,规模较大的有F2断层,从右岸斜穿坝址,断层破碎带宽18~30m,对坝基变形和防渗均有不利影响。两岸卸荷作用强烈。河床覆盖层最厚5.9m,两岸坡脚处有崩塌堆积的孤石、块石夹碎石土、壤土,最大厚度为8.4m。坝址微风化岩体具有弱透水性,可作为大坝防渗的相对不透水层。库坝区抗震设防烈度为7度。3结构设计工程枢纽由大坝、泄洪隧洞、溢洪道、引水隧洞等建筑物组成。大坝为黏土心墙堆石坝,最大坝高77m,坝顶长度249.5m,坝顶宽度10m,坝顶高程2095.00m,上游坝坡在2057.00m高程以上为1:1.8,以下为1:2.2,在高程2057.00m处设戗台,宽24.6m。下游坝坡在高程2080.00m、2063.00m、2042.00m处都设置有3m宽的戗道;高程2063.00m以上坝坡为1:1.75,以下坡度为1:1.85。坝壳堆石料,为弱风化石英砂岩、角砾岩、白云岩,强度较高,对岩体中夹有泥岩、页岩及泥质粉砂岩软岩互层,作为堆石料中的细粒料填充。下游设置反滤层两层,厚度为3m。上游坝壳采用堆石填筑,下游高程2042.00~2061.00m之间坝壳,采用风化堆石填筑,其他部位采用堆石填筑。对基面中的深潭、狭沟、充泥大裂隙、溶蚀洞穴等进行掏挖,而后回填混凝土。F2断层及岩脉蚀变带做混凝土塞置换,并采取了深孔固结灌浆和3排帷幕。盖板固结灌浆孔距、排距均为5m,孔入岩深度为5m。控制标准为透水率q≤5Lu,固结灌浆压力为0.4MPa。水库防渗体系由黏土心墙和基础帷幕灌浆构成。心墙防渗体顶高程高于校核洪水位0.42m,顶宽3m,上、下坡均为1:0.25,底部设置1m厚的钢筋混凝土C20盖板。帷幕线沿心墙轴线布设,左岸坝肩向山里延伸50m,右岸坝肩向山里延伸16m,帷幕线水平全长316m。帷幕灌浆孔布设两排,排距1.4m,孔距2m。防渗帷幕为接地式,灌浆孔深入相对隔水层(q≤3Lu)3~5m。帷幕灌浆质量标准透水率q≤3Lu。黏土心墙上游设置两层反滤层,厚度为2m,下游设置两层反滤层,厚度为3m。反滤料采用饱和抗压强度大于60MPa、软化系数大于0.65的弱风化白云质石英砂岩加工。心墙防渗料粒径d<0.075mm的颗粒含量为40%~85%,I区反滤层的用料取值范围:0.15mm≤D15≤0.5mm、2.8mm≤D60≤6.8mm、9mm≤D90≤20mm;Ⅱ区反滤层的用料设计取值范围:2.5mm≤D15≤8.5mm、18mm≤D60≤40mm、40mm≤D90≤80mm。通过试验论证,I区反滤料中粒径d<0.075mm的颗粒含量设计控制在8%内,渗透系数k<1x10-3cm/s。工程的设计特点是采用爆炸振密方法处理坝基,河床表层砂的平均干密度达1.55g/cm3,孔隙比0.7,相对密度0.68,效果较好。4主要工程量大坝主要工程量:坝体堆石体69.07万m2;I区反滤料为5.77万m3;Ⅱ区反滤料为5.79万m2;黏土心墙20.16万m3;块石护坡1.2万m2;大坝总填筑119.76万m3;帷幕灌浆1.77万m。5分析结果校核洪水位渗流分析结果图设计洪水位渗流分析结果图正常蓄水位渗流分析结果图上游边坡稳定性分析结果图下游边坡稳定性分析结果图地震工况上游边坡分析结果图地震工况下游边坡分析结果图 查看全部
<p style="text-align: center;"><strong>某水库黏土心墙堆石坝</strong></p><p><strong>1</strong><strong>工程概况</strong></p><p>大坝坝址选在金沙江水系二级支流掌鸠河上游峡谷河段内,水库总库容484万m3。工程属Ⅱ等大(2)型水库工程,各建筑物均按2级建筑物设计。设计洪水标准为500年一遇,校核洪水标准为5000年一遇。</p><p><strong>2</strong><strong>工程地质</strong></p><p>坝址河床为不对称的U形谷,岸坡陡缓变化大。坝址出露中生代白垩系上统马头山组(K2m)砂岩、白云岩、泥岩、页岩地层,其间有燕山期侵入岩脉穿插。岩层倾向大坝上游偏左岸,倾角10°~16°。坝址发育顺河向、横河向两组结构面,规模较大的有F2断层,从右岸斜穿坝址,断层破碎带宽18~30m,对坝基变形和防渗均有不利影响。两岸卸荷作用强烈。河床覆盖层最厚5.9m,两岸坡脚处有崩塌堆积的孤石、块石夹碎石土、壤土,最大厚度为8.4m。坝址微风化岩体具有弱透水性,可作为大坝防渗的相对不透水层。</p><p>库坝区抗震设防烈度为7度。</p><p><strong>3</strong><strong>结构设计</strong></p><p>工程枢纽由大坝、泄洪隧洞、溢洪道、引水隧洞等建筑物组成。</p><p>大坝为黏土心墙堆石坝,最大坝高77m,坝顶长度249.5m,坝顶宽度10m,坝顶高程2095.00m,上游坝坡在2057.00m高程以上为1:1.8,以下为1:2.2,在高程2057.00m处设戗台,宽24.6m。下游坝坡在高程2080.00m、2063.00m、2042.00m处都设置有3m宽的戗道;高程2063.00m以上坝坡为1:1.75,以下坡度为1:1.85。</p><p>坝壳堆石料,为弱风化石英砂岩、角砾岩、白云岩,强度较高,对岩体中夹有泥岩、页岩及泥质粉砂岩软岩互层,作为堆石料中的细粒料填充。下游设置反滤层两层,厚度为3m。上游坝壳采用堆石填筑,下游高程2042.00~2061.00m之间坝壳,采用风化堆石填筑,其他部位采用堆石填筑。</p><p>对基面中的深潭、狭沟、充泥大裂隙、溶蚀洞穴等进行掏挖,而后回填混凝土。F2断层及岩脉蚀变带做混凝土塞置换,并采取了深孔固结灌浆和3排帷幕。</p><p>盖板固结灌浆孔距、排距均为5m,孔入岩深度为5m。控制标准为透水率q≤5Lu,固结灌浆压力为0.4MPa。</p><p>水库防渗体系由黏土心墙和基础帷幕灌浆构成。心墙防渗体顶高程高于校核洪水位0.42m,顶宽3m,上、下坡均为1:0.25,底部设置1m厚的钢筋混凝土C20盖板。帷幕线沿心墙轴线布设,左岸坝肩向山里延伸50m,右岸坝肩向山里延伸16m,帷幕线水平全长316m。帷幕灌浆孔布设两排,排距1.4m,孔距2m。防渗帷幕为接地式,灌浆孔深入相对隔水层(q≤3Lu)3~5m。帷幕灌浆质量标准透水率q≤3Lu。</p><p>黏土心墙上游设置两层反滤层,厚度为2m,下游设置两层反滤层,厚度为3m。反滤料采用饱和抗压强度大于60MPa、软化系数大于0.65的弱风化白云质石英砂岩加工。心墙防渗料粒径d&lt;0.075mm的颗粒含量为40%~85%,I区反滤层的用料取值范围:0.15mm≤D15≤0.5mm、2.8mm≤D60≤6.8mm、9mm≤D90≤20mm;Ⅱ区反滤层的用料设计取值范围:2.5mm≤D15≤8.5mm、18mm≤D60≤40mm、40mm≤D90≤80mm。通过试验论证,I区反滤料中粒径d&lt;0.075mm的颗粒含量设计控制在8%内,渗透系数k&lt;1x10-3cm/s。</p><p>工程的设计特点是采用爆炸振密方法处理坝基,河床表层砂的平均干密度达1.55g/cm3,孔隙比0.7,相对密度0.68,效果较好。<br/></p><p><strong>4</strong><strong>主要工程量</strong></p><p>大坝主要工程量:坝体堆石体69.07万m2;I区反滤料为5.77万m3;Ⅱ区反滤料为5.79万m2;黏土心墙20.16万m3;块石护坡1.2万m2;大坝总填筑119.76万m3;帷幕灌浆1.77万m。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759684351343.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759726937934.png" alt="image.png"/><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759707340821.png" alt="image.png"/><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759715237171.png" alt="image.png"/></p><p><strong>5分析结果</strong></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618760151792282.png" alt="image.png" style="text-align: center; white-space: normal;"/></p><p style="text-align: center;">校核洪水位渗流分析结果图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618760169827273.png" alt="image.png" style="text-align: center; white-space: normal;"/></p><p style="text-align: center;">设计洪水位渗流分析结果图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618760206842299.png" alt="image.png" style="text-align: center; white-space: normal;"/></p><p style="text-align: center;">正常蓄水位渗流分析结果图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759816263154.png" alt="image.png"/></p><p style="text-align: center;">上游边坡稳定性分析结果图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759840128851.png" alt="image.png"/></p><p style="text-align: center;">下游边坡稳定性分析结果图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759871138722.png" alt="image.png"/></p><p style="text-align: center;">地震工况上游边坡分析结果图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759891996630.png" alt="image.png"/></p><p style="text-align: center;">地震工况下游边坡分析结果图</p><p><br/></p>

GEO5有限元渗流模块如何提高计算收敛性

库仑产品库仑戚工 发表了文章 • 0 个评论 • 3225 次浏览 • 2017-05-25 14:49 • 来自相关话题

  GEO5有限元渗流模块计算不收敛时,应适当简化模型、结合实际经验调整相关参数可增加计算的收敛性。下面以近期某客户发来的项目为例,说明如何简化模型及调整哪些参数。  该项目为土石坝渗流分析,模型如下所示:  加密网格后,显示如下:  由于模型过于复杂,划分网格后现错误提示如下:  在GEO5有限元中,当网格划分出现过多错误提示时,若不修改,可能会导致计算结果不收敛。因此需要适当的简化模型,针对本项目,简化之处有:  1、模型中有些地方较复杂,建议简化,以提高网格划分质量,如下图:  简化后,如下:  此时再划分网格,软件不再显示网格质量差的提示。  2、大坝最上方为混凝土墙,可以直接用不排水边界条件代替即可,简化模型。  重新划分完网格之后,此时软件不再有错误提示,显示如下:注:针对复杂模型,建议地层线用dxf多段线导入,其他内部点线用dxf模板导入后用有限元中的自由点和自由线定义,这样方便后期修改,本模型中内部点线就是这样建成的。GEO5多段线建模,点击这里查看。  修改完模型之后,计算结果还是不收敛,最后查明原因为相关渗透参数输入不正确。将渗透系数修改完之后计算收敛,结果如下图所示:注:关于渗透系数如何取值,点击这里查看软件自带帮助中的相关说明。  至此,关于有限元渗流模块中的注意事项至此结束,如有更好的想法欢迎在下方留言讨论。案例源文件:有限元渗流稳定分析-简化- modified van Genuchten.rar 查看全部
<p>  GEO5有限元渗流模块计算不收敛时,应适当简化模型、结合实际经验调整相关参数可增加计算的收敛性。下面以近期某客户发来的项目为例,说明如何简化模型及调整哪些参数。</p><p>  该项目为土石坝渗流分析,模型如下所示:</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1495694317188428.png" alt="blob.png"/></p><p>  加密网格后,显示如下:</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1495694337416966.png" alt="blob.png"/></p><p>  由于模型过于复杂,划分网格后现错误提示如下:</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1495694355154217.png" alt="blob.png"/></p><p>  在GEO5有限元中,当网格划分出现过多错误提示时,若不修改,可能会导致计算结果不收敛。因此需要适当的简化模型,针对本项目,简化之处有:</p><p>  1、模型中有些地方较复杂,建议简化,以提高网格划分质量,如下图:</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1495694378764216.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1495694388109333.png" alt="blob.png"/></p><p>  简化后,如下:</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1495694408739290.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1495694418135747.png" alt="blob.png"/></p><p>  此时再划分网格,软件不再显示网格质量差的提示。</p><p>  2、大坝最上方为混凝土墙,可以直接用不排水边界条件代替即可,简化模型。</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1495694437110412.png" alt="blob.png"/></p><p>  重新划分完网格之后,此时软件不再有错误提示,显示如下:</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1495694454378189.png" alt="blob.png"/></p><blockquote><p>注:针对复杂模型,建议地层线用dxf多段线导入,其他内部点线用dxf模板导入后用有限元中的自由点和自由线定义,这样方便后期修改,本模型中内部点线就是这样建成的。</p><p>GEO5多段线建模,<a href="/dochelp/19" target="_blank">点击这里</a>查看。</p></blockquote><p>  修改完模型之后,计算结果还是不收敛,最后查明原因为相关渗透参数输入不正确。将渗透系数修改完之后计算收敛,结果如下图所示:</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1495694477664285.png" alt="blob.png"/></p><blockquote><p>注:关于渗透系数如何取值,<a href="/dochelp/912" target="_blank">点击这里</a>查看软件自带帮助中的相关说明。</p></blockquote><p>  至此,关于有限元渗流模块中的注意事项至此结束,如有更好的想法欢迎在下方留言讨论。</p><p>案例源文件:<img src="https://wen.kulunsoft.com/stat ... ot%3B style="line-height: 16px; vertical-align: middle; margin-right: 2px;"/><a href="http://wen.kulunsoft.com/uploa ... ot%3B title="有限元渗流稳定分析-简化- modified van Genuchten.rar" style="line-height: 16px; font-size: 12px; color: rgb(0, 102, 204);">有限元渗流稳定分析-简化- modified van Genuchten.rar</a></p>

GEO5案例:坑中坑拉森钢板桩支护——摩洛哥某基坑

库仑产品库仑戚工 发表了文章 • 0 个评论 • 3906 次浏览 • 2017-05-05 10:33 • 来自相关话题

项目名称:摩洛哥某基坑项目使用软件:GEO5土质边坡稳定性分析、GEO5深基坑支护结构分析、GEO5岩土工程有限元分析设计方案:基坑采用放坡+坑中坑拉森钢板桩支护,基坑深度4.7m,坑中坑深度6m,采用坑内降水。岩土材料从上至下分别为素填土、粉土、细砂和粉砂。项目特点:坑中坑拉森钢板桩支护,基坑降水,如上图所示。软件优势:GEO5「深基坑支护结构分析」模块可以考虑做坑中坑拉森钢板桩支护,「岩土工程有限元分析」模块可以做坑内降水分析。计算结果:边坡稳定性验算 (毕肖普法(Bishop))滑面上下滑力的总和 :Fa =188.53kN/m滑面上抗滑力的总和 :Fp =346.38kN/m下滑力矩 :Ma =2198.27kNm/m抗滑力矩 :Mp =4038.76kNm/m安全系数 = 1.84 > 1.35边坡稳定性 满足要求 查看全部
<p><strong>项目名称</strong>:摩洛哥某基坑项目</p><p><strong>使用软件</strong>:GEO5土质边坡稳定性分析、GEO5深基坑支护结构分析、GEO5岩土工程有限元分析</p><p><strong>设计方案</strong>:基坑采用放坡+坑中坑拉森钢板桩支护,基坑深度4.7m,坑中坑深度6m,采用坑内降水。岩土材料从上至下分别为素填土、粉土、细砂和粉砂。</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951310456200.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951321718076.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951335681427.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951344112511.png" alt="blob.png"/></p><p><strong>项目特点:</strong>坑中坑拉森钢板桩支护,基坑降水,如上图所示。</p><p><strong>软件优势:</strong>GEO5「深基坑支护结构分析」模块可以考虑做坑中坑拉森钢板桩支护,「岩土工程有限元分析」模块可以做坑内降水分析。</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951898328426.png" alt="blob.png"/><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951941553859.png" alt="blob.png"/><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951922715298.png" alt="blob.png"/></p><p>计算结果:</p><p><strong>边坡稳定性验算</strong><strong> (</strong><strong>毕肖普法</strong><strong>(Bishop))</strong></p><table><tbody><tr class="firstRow"><td><p>滑面上下滑力的总和 :</p></td><td><p>Fa =</p></td><td><p>188.53</p></td><td><p>kN/m</p></td></tr><tr><td><p>滑面上抗滑力的总和 :</p></td><td><p>Fp =</p></td><td><p>346.38</p></td><td><p>kN/m</p></td></tr><tr><td><p>下滑力矩 :</p></td><td><p>Ma =</p></td><td><p>2198.27</p></td><td><p>kNm/m</p></td></tr><tr><td><p>抗滑力矩 :</p></td><td><p>Mp =</p></td><td><p>4038.76</p></td><td><p>kNm/m</p></td></tr></tbody></table><p>安全系数 = 1.84 &gt; 1.35</p><p>边坡稳定性 满足要求</p><p style="text-align: center;"><strong><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951394640013.png" alt="blob.png"/></strong></p><p style="text-align: center;"><strong><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951404138338.png" alt="blob.png"/></strong></p><p style="text-align: center;"><strong><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951411674746.png" alt="blob.png"/></strong></p><p style="text-align: center;"><strong><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951422691371.png" alt="blob.png"/></strong></p><p style="text-align: center;"><strong><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951429959406.png" alt="blob.png"/></strong></p><p style="text-align: center;"><strong><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951437348323.png" alt="blob.png"/></strong></p><p style="text-align: center;"><strong><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951445120043.png" alt="blob.png"/></strong></p><p style="text-align: center;"><strong><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951454695566.png" alt="blob.png"/></strong></p><p style="text-align: center;"><strong><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951462997945.png" alt="blob.png"/></strong></p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493988349380500.png" alt="blob.png"/></p>

GEO5有限元分析土石坝渗流问题

库仑产品库仑沈工 发表了文章 • 0 个评论 • 3986 次浏览 • 2017-04-10 11:36 • 来自相关话题

  本工程案例为碎石土心墙堆石坝,坝高136m,坝顶宽12m,坝底宽71m。图1为坝体剖面图。图1 坝体剖面图  首先在工况阶段[建模]中进行分析设置、添加岩土材料、导入几何模型及划分网格等。GEO5支持直接导入在CAD等软件中已经建好的DXF模型文件。图2 导入坝体模型  在[分析设置]中选择分析类型为“稳定流”,勾选“详细结果”复选框。 图3 分析设置  添加完所有的坝体材料以后,在[指定材料]界面中将材料指定给各自对应的部位。 图4 指定坝体材料  接着通过创建自由线来确定混凝土防渗墙在地基中的位置,最后对模型进行网格划分操作。图5 生成网格  点击进入工况阶段[1],在[梁]设置界面中添加防渗墙。接着通过[线渗透边界]设置渗流边界条件,这里将上游水位高程设置为62.0m,下游边界类型设置为“溢出边界”。 图6 边界条件设置  设置好边界条件以后,在[分析]界面中点击[开始分析按钮],通过短暂的求解即可得到坝体的渗流特征计算结果。图7 孔隙水压力分布云图图8 总水头分布云图图9 渗流矢量图 查看全部
<p>  本工程案例为碎石土心墙堆石坝,坝高136m,坝顶宽12m,坝底宽71m。图1为坝体剖面图。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1597301658445588.png" alt="image.png"/></p><p style="text-align: center;">图1 坝体剖面图</p><p>  首先在工况阶段[建模]中进行分析设置、添加岩土材料、导入几何模型及划分网格等。GEO5支持直接导入在CAD等软件中已经建好的DXF模型文件。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1597301672475580.png" alt="image.png"/></p><p style="text-align: center;">图2 导入坝体模型</p><p>  在[分析设置]中选择分析类型为“稳定流”,勾选“详细结果”复选框。</p><p style="text-align: center;">&nbsp;<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1597301684988915.png" alt="image.png"/></p><p style="text-align: center;">图3 分析设置</p><p>  添加完所有的坝体材料以后,在[指定材料]界面中将材料指定给各自对应的部位。</p><p style="text-align: center;">&nbsp;<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1597301694775477.png" alt="image.png"/></p><p style="text-align: center;">图4 指定坝体材料</p><p>  接着通过创建自由线来确定混凝土防渗墙在地基中的位置,最后对模型进行网格划分操作。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1597301706437722.png" alt="image.png"/></p><p style="text-align: center;">图5 生成网格</p><p>  点击进入工况阶段[1],在[梁]设置界面中添加防渗墙。接着通过[线渗透边界]设置渗流边界条件,这里将上游水位高程设置为62.0m,下游边界类型设置为“溢出边界”。</p><p style="text-align: center;">&nbsp;<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1597301718861785.png" alt="image.png"/></p><p style="text-align: center;">图6 边界条件设置</p><p>  设置好边界条件以后,在[分析]界面中点击[开始分析按钮],通过短暂的求解即可得到坝体的渗流特征计算结果。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1597301730747915.png" alt="image.png"/></p><p style="text-align: center;">图7 孔隙水压力分布云图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1597301742458576.png" alt="image.png"/></p><p style="text-align: center;">图8 总水头分布云图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1597301755684981.png" alt="image.png"/></p><p style="text-align: center;">图9 渗流矢量图</p>

某水库黏土心墙堆石坝

库仑产品库仑刘工 发表了文章 • 0 个评论 • 2168 次浏览 • 2021-04-18 23:44 • 来自相关话题

某水库黏土心墙堆石坝1工程概况大坝坝址选在金沙江水系二级支流掌鸠河上游峡谷河段内,水库总库容484万m3。工程属Ⅱ等大(2)型水库工程,各建筑物均按2级建筑物设计。设计洪水标准为500年一遇,校核洪水标准为5000年一遇。2工程地质坝址河床为不对称的U形谷,岸坡陡缓变化大。坝址出露中生代白垩系上统马头山组(K2m)砂岩、白云岩、泥岩、页岩地层,其间有燕山期侵入岩脉穿插。岩层倾向大坝上游偏左岸,倾角10°~16°。坝址发育顺河向、横河向两组结构面,规模较大的有F2断层,从右岸斜穿坝址,断层破碎带宽18~30m,对坝基变形和防渗均有不利影响。两岸卸荷作用强烈。河床覆盖层最厚5.9m,两岸坡脚处有崩塌堆积的孤石、块石夹碎石土、壤土,最大厚度为8.4m。坝址微风化岩体具有弱透水性,可作为大坝防渗的相对不透水层。库坝区抗震设防烈度为7度。3结构设计工程枢纽由大坝、泄洪隧洞、溢洪道、引水隧洞等建筑物组成。大坝为黏土心墙堆石坝,最大坝高77m,坝顶长度249.5m,坝顶宽度10m,坝顶高程2095.00m,上游坝坡在2057.00m高程以上为1:1.8,以下为1:2.2,在高程2057.00m处设戗台,宽24.6m。下游坝坡在高程2080.00m、2063.00m、2042.00m处都设置有3m宽的戗道;高程2063.00m以上坝坡为1:1.75,以下坡度为1:1.85。坝壳堆石料,为弱风化石英砂岩、角砾岩、白云岩,强度较高,对岩体中夹有泥岩、页岩及泥质粉砂岩软岩互层,作为堆石料中的细粒料填充。下游设置反滤层两层,厚度为3m。上游坝壳采用堆石填筑,下游高程2042.00~2061.00m之间坝壳,采用风化堆石填筑,其他部位采用堆石填筑。对基面中的深潭、狭沟、充泥大裂隙、溶蚀洞穴等进行掏挖,而后回填混凝土。F2断层及岩脉蚀变带做混凝土塞置换,并采取了深孔固结灌浆和3排帷幕。盖板固结灌浆孔距、排距均为5m,孔入岩深度为5m。控制标准为透水率q≤5Lu,固结灌浆压力为0.4MPa。水库防渗体系由黏土心墙和基础帷幕灌浆构成。心墙防渗体顶高程高于校核洪水位0.42m,顶宽3m,上、下坡均为1:0.25,底部设置1m厚的钢筋混凝土C20盖板。帷幕线沿心墙轴线布设,左岸坝肩向山里延伸50m,右岸坝肩向山里延伸16m,帷幕线水平全长316m。帷幕灌浆孔布设两排,排距1.4m,孔距2m。防渗帷幕为接地式,灌浆孔深入相对隔水层(q≤3Lu)3~5m。帷幕灌浆质量标准透水率q≤3Lu。黏土心墙上游设置两层反滤层,厚度为2m,下游设置两层反滤层,厚度为3m。反滤料采用饱和抗压强度大于60MPa、软化系数大于0.65的弱风化白云质石英砂岩加工。心墙防渗料粒径d<0.075mm的颗粒含量为40%~85%,I区反滤层的用料取值范围:0.15mm≤D15≤0.5mm、2.8mm≤D60≤6.8mm、9mm≤D90≤20mm;Ⅱ区反滤层的用料设计取值范围:2.5mm≤D15≤8.5mm、18mm≤D60≤40mm、40mm≤D90≤80mm。通过试验论证,I区反滤料中粒径d<0.075mm的颗粒含量设计控制在8%内,渗透系数k<1x10-3cm/s。工程的设计特点是采用爆炸振密方法处理坝基,河床表层砂的平均干密度达1.55g/cm3,孔隙比0.7,相对密度0.68,效果较好。4主要工程量大坝主要工程量:坝体堆石体69.07万m2;I区反滤料为5.77万m3;Ⅱ区反滤料为5.79万m2;黏土心墙20.16万m3;块石护坡1.2万m2;大坝总填筑119.76万m3;帷幕灌浆1.77万m。5分析结果校核洪水位渗流分析结果图设计洪水位渗流分析结果图正常蓄水位渗流分析结果图上游边坡稳定性分析结果图下游边坡稳定性分析结果图地震工况上游边坡分析结果图地震工况下游边坡分析结果图 查看全部
<p style="text-align: center;"><strong>某水库黏土心墙堆石坝</strong></p><p><strong>1</strong><strong>工程概况</strong></p><p>大坝坝址选在金沙江水系二级支流掌鸠河上游峡谷河段内,水库总库容484万m3。工程属Ⅱ等大(2)型水库工程,各建筑物均按2级建筑物设计。设计洪水标准为500年一遇,校核洪水标准为5000年一遇。</p><p><strong>2</strong><strong>工程地质</strong></p><p>坝址河床为不对称的U形谷,岸坡陡缓变化大。坝址出露中生代白垩系上统马头山组(K2m)砂岩、白云岩、泥岩、页岩地层,其间有燕山期侵入岩脉穿插。岩层倾向大坝上游偏左岸,倾角10°~16°。坝址发育顺河向、横河向两组结构面,规模较大的有F2断层,从右岸斜穿坝址,断层破碎带宽18~30m,对坝基变形和防渗均有不利影响。两岸卸荷作用强烈。河床覆盖层最厚5.9m,两岸坡脚处有崩塌堆积的孤石、块石夹碎石土、壤土,最大厚度为8.4m。坝址微风化岩体具有弱透水性,可作为大坝防渗的相对不透水层。</p><p>库坝区抗震设防烈度为7度。</p><p><strong>3</strong><strong>结构设计</strong></p><p>工程枢纽由大坝、泄洪隧洞、溢洪道、引水隧洞等建筑物组成。</p><p>大坝为黏土心墙堆石坝,最大坝高77m,坝顶长度249.5m,坝顶宽度10m,坝顶高程2095.00m,上游坝坡在2057.00m高程以上为1:1.8,以下为1:2.2,在高程2057.00m处设戗台,宽24.6m。下游坝坡在高程2080.00m、2063.00m、2042.00m处都设置有3m宽的戗道;高程2063.00m以上坝坡为1:1.75,以下坡度为1:1.85。</p><p>坝壳堆石料,为弱风化石英砂岩、角砾岩、白云岩,强度较高,对岩体中夹有泥岩、页岩及泥质粉砂岩软岩互层,作为堆石料中的细粒料填充。下游设置反滤层两层,厚度为3m。上游坝壳采用堆石填筑,下游高程2042.00~2061.00m之间坝壳,采用风化堆石填筑,其他部位采用堆石填筑。</p><p>对基面中的深潭、狭沟、充泥大裂隙、溶蚀洞穴等进行掏挖,而后回填混凝土。F2断层及岩脉蚀变带做混凝土塞置换,并采取了深孔固结灌浆和3排帷幕。</p><p>盖板固结灌浆孔距、排距均为5m,孔入岩深度为5m。控制标准为透水率q≤5Lu,固结灌浆压力为0.4MPa。</p><p>水库防渗体系由黏土心墙和基础帷幕灌浆构成。心墙防渗体顶高程高于校核洪水位0.42m,顶宽3m,上、下坡均为1:0.25,底部设置1m厚的钢筋混凝土C20盖板。帷幕线沿心墙轴线布设,左岸坝肩向山里延伸50m,右岸坝肩向山里延伸16m,帷幕线水平全长316m。帷幕灌浆孔布设两排,排距1.4m,孔距2m。防渗帷幕为接地式,灌浆孔深入相对隔水层(q≤3Lu)3~5m。帷幕灌浆质量标准透水率q≤3Lu。</p><p>黏土心墙上游设置两层反滤层,厚度为2m,下游设置两层反滤层,厚度为3m。反滤料采用饱和抗压强度大于60MPa、软化系数大于0.65的弱风化白云质石英砂岩加工。心墙防渗料粒径d&lt;0.075mm的颗粒含量为40%~85%,I区反滤层的用料取值范围:0.15mm≤D15≤0.5mm、2.8mm≤D60≤6.8mm、9mm≤D90≤20mm;Ⅱ区反滤层的用料设计取值范围:2.5mm≤D15≤8.5mm、18mm≤D60≤40mm、40mm≤D90≤80mm。通过试验论证,I区反滤料中粒径d&lt;0.075mm的颗粒含量设计控制在8%内,渗透系数k&lt;1x10-3cm/s。</p><p>工程的设计特点是采用爆炸振密方法处理坝基,河床表层砂的平均干密度达1.55g/cm3,孔隙比0.7,相对密度0.68,效果较好。<br/></p><p><strong>4</strong><strong>主要工程量</strong></p><p>大坝主要工程量:坝体堆石体69.07万m2;I区反滤料为5.77万m3;Ⅱ区反滤料为5.79万m2;黏土心墙20.16万m3;块石护坡1.2万m2;大坝总填筑119.76万m3;帷幕灌浆1.77万m。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759684351343.png" alt="image.png"/></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759726937934.png" alt="image.png"/><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759707340821.png" alt="image.png"/><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759715237171.png" alt="image.png"/></p><p><strong>5分析结果</strong></p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618760151792282.png" alt="image.png" style="text-align: center; white-space: normal;"/></p><p style="text-align: center;">校核洪水位渗流分析结果图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618760169827273.png" alt="image.png" style="text-align: center; white-space: normal;"/></p><p style="text-align: center;">设计洪水位渗流分析结果图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618760206842299.png" alt="image.png" style="text-align: center; white-space: normal;"/></p><p style="text-align: center;">正常蓄水位渗流分析结果图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759816263154.png" alt="image.png"/></p><p style="text-align: center;">上游边坡稳定性分析结果图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759840128851.png" alt="image.png"/></p><p style="text-align: center;">下游边坡稳定性分析结果图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759871138722.png" alt="image.png"/></p><p style="text-align: center;">地震工况上游边坡分析结果图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1618759891996630.png" alt="image.png"/></p><p style="text-align: center;">地震工况下游边坡分析结果图</p><p><br/></p>

GEO5有限元渗流模块如何提高计算收敛性

库仑产品库仑戚工 发表了文章 • 0 个评论 • 3225 次浏览 • 2017-05-25 14:49 • 来自相关话题

  GEO5有限元渗流模块计算不收敛时,应适当简化模型、结合实际经验调整相关参数可增加计算的收敛性。下面以近期某客户发来的项目为例,说明如何简化模型及调整哪些参数。  该项目为土石坝渗流分析,模型如下所示:  加密网格后,显示如下:  由于模型过于复杂,划分网格后现错误提示如下:  在GEO5有限元中,当网格划分出现过多错误提示时,若不修改,可能会导致计算结果不收敛。因此需要适当的简化模型,针对本项目,简化之处有:  1、模型中有些地方较复杂,建议简化,以提高网格划分质量,如下图:  简化后,如下:  此时再划分网格,软件不再显示网格质量差的提示。  2、大坝最上方为混凝土墙,可以直接用不排水边界条件代替即可,简化模型。  重新划分完网格之后,此时软件不再有错误提示,显示如下:注:针对复杂模型,建议地层线用dxf多段线导入,其他内部点线用dxf模板导入后用有限元中的自由点和自由线定义,这样方便后期修改,本模型中内部点线就是这样建成的。GEO5多段线建模,点击这里查看。  修改完模型之后,计算结果还是不收敛,最后查明原因为相关渗透参数输入不正确。将渗透系数修改完之后计算收敛,结果如下图所示:注:关于渗透系数如何取值,点击这里查看软件自带帮助中的相关说明。  至此,关于有限元渗流模块中的注意事项至此结束,如有更好的想法欢迎在下方留言讨论。案例源文件:有限元渗流稳定分析-简化- modified van Genuchten.rar 查看全部
<p>  GEO5有限元渗流模块计算不收敛时,应适当简化模型、结合实际经验调整相关参数可增加计算的收敛性。下面以近期某客户发来的项目为例,说明如何简化模型及调整哪些参数。</p><p>  该项目为土石坝渗流分析,模型如下所示:</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1495694317188428.png" alt="blob.png"/></p><p>  加密网格后,显示如下:</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1495694337416966.png" alt="blob.png"/></p><p>  由于模型过于复杂,划分网格后现错误提示如下:</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1495694355154217.png" alt="blob.png"/></p><p>  在GEO5有限元中,当网格划分出现过多错误提示时,若不修改,可能会导致计算结果不收敛。因此需要适当的简化模型,针对本项目,简化之处有:</p><p>  1、模型中有些地方较复杂,建议简化,以提高网格划分质量,如下图:</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1495694378764216.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1495694388109333.png" alt="blob.png"/></p><p>  简化后,如下:</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1495694408739290.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1495694418135747.png" alt="blob.png"/></p><p>  此时再划分网格,软件不再显示网格质量差的提示。</p><p>  2、大坝最上方为混凝土墙,可以直接用不排水边界条件代替即可,简化模型。</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1495694437110412.png" alt="blob.png"/></p><p>  重新划分完网格之后,此时软件不再有错误提示,显示如下:</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1495694454378189.png" alt="blob.png"/></p><blockquote><p>注:针对复杂模型,建议地层线用dxf多段线导入,其他内部点线用dxf模板导入后用有限元中的自由点和自由线定义,这样方便后期修改,本模型中内部点线就是这样建成的。</p><p>GEO5多段线建模,<a href="/dochelp/19" target="_blank">点击这里</a>查看。</p></blockquote><p>  修改完模型之后,计算结果还是不收敛,最后查明原因为相关渗透参数输入不正确。将渗透系数修改完之后计算收敛,结果如下图所示:</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1495694477664285.png" alt="blob.png"/></p><blockquote><p>注:关于渗透系数如何取值,<a href="/dochelp/912" target="_blank">点击这里</a>查看软件自带帮助中的相关说明。</p></blockquote><p>  至此,关于有限元渗流模块中的注意事项至此结束,如有更好的想法欢迎在下方留言讨论。</p><p>案例源文件:<img src="https://wen.kulunsoft.com/stat ... ot%3B style="line-height: 16px; vertical-align: middle; margin-right: 2px;"/><a href="http://wen.kulunsoft.com/uploa ... ot%3B title="有限元渗流稳定分析-简化- modified van Genuchten.rar" style="line-height: 16px; font-size: 12px; color: rgb(0, 102, 204);">有限元渗流稳定分析-简化- modified van Genuchten.rar</a></p>

GEO5案例:坑中坑拉森钢板桩支护——摩洛哥某基坑

库仑产品库仑戚工 发表了文章 • 0 个评论 • 3906 次浏览 • 2017-05-05 10:33 • 来自相关话题

项目名称:摩洛哥某基坑项目使用软件:GEO5土质边坡稳定性分析、GEO5深基坑支护结构分析、GEO5岩土工程有限元分析设计方案:基坑采用放坡+坑中坑拉森钢板桩支护,基坑深度4.7m,坑中坑深度6m,采用坑内降水。岩土材料从上至下分别为素填土、粉土、细砂和粉砂。项目特点:坑中坑拉森钢板桩支护,基坑降水,如上图所示。软件优势:GEO5「深基坑支护结构分析」模块可以考虑做坑中坑拉森钢板桩支护,「岩土工程有限元分析」模块可以做坑内降水分析。计算结果:边坡稳定性验算 (毕肖普法(Bishop))滑面上下滑力的总和 :Fa =188.53kN/m滑面上抗滑力的总和 :Fp =346.38kN/m下滑力矩 :Ma =2198.27kNm/m抗滑力矩 :Mp =4038.76kNm/m安全系数 = 1.84 > 1.35边坡稳定性 满足要求 查看全部
<p><strong>项目名称</strong>:摩洛哥某基坑项目</p><p><strong>使用软件</strong>:GEO5土质边坡稳定性分析、GEO5深基坑支护结构分析、GEO5岩土工程有限元分析</p><p><strong>设计方案</strong>:基坑采用放坡+坑中坑拉森钢板桩支护,基坑深度4.7m,坑中坑深度6m,采用坑内降水。岩土材料从上至下分别为素填土、粉土、细砂和粉砂。</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951310456200.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951321718076.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951335681427.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951344112511.png" alt="blob.png"/></p><p><strong>项目特点:</strong>坑中坑拉森钢板桩支护,基坑降水,如上图所示。</p><p><strong>软件优势:</strong>GEO5「深基坑支护结构分析」模块可以考虑做坑中坑拉森钢板桩支护,「岩土工程有限元分析」模块可以做坑内降水分析。</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951898328426.png" alt="blob.png"/><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951941553859.png" alt="blob.png"/><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951922715298.png" alt="blob.png"/></p><p>计算结果:</p><p><strong>边坡稳定性验算</strong><strong> (</strong><strong>毕肖普法</strong><strong>(Bishop))</strong></p><table><tbody><tr class="firstRow"><td><p>滑面上下滑力的总和 :</p></td><td><p>Fa =</p></td><td><p>188.53</p></td><td><p>kN/m</p></td></tr><tr><td><p>滑面上抗滑力的总和 :</p></td><td><p>Fp =</p></td><td><p>346.38</p></td><td><p>kN/m</p></td></tr><tr><td><p>下滑力矩 :</p></td><td><p>Ma =</p></td><td><p>2198.27</p></td><td><p>kNm/m</p></td></tr><tr><td><p>抗滑力矩 :</p></td><td><p>Mp =</p></td><td><p>4038.76</p></td><td><p>kNm/m</p></td></tr></tbody></table><p>安全系数 = 1.84 &gt; 1.35</p><p>边坡稳定性 满足要求</p><p style="text-align: center;"><strong><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951394640013.png" alt="blob.png"/></strong></p><p style="text-align: center;"><strong><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951404138338.png" alt="blob.png"/></strong></p><p style="text-align: center;"><strong><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951411674746.png" alt="blob.png"/></strong></p><p style="text-align: center;"><strong><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951422691371.png" alt="blob.png"/></strong></p><p style="text-align: center;"><strong><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951429959406.png" alt="blob.png"/></strong></p><p style="text-align: center;"><strong><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951437348323.png" alt="blob.png"/></strong></p><p style="text-align: center;"><strong><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951445120043.png" alt="blob.png"/></strong></p><p style="text-align: center;"><strong><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951454695566.png" alt="blob.png"/></strong></p><p style="text-align: center;"><strong><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493951462997945.png" alt="blob.png"/></strong></p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1493988349380500.png" alt="blob.png"/></p>

GEO5有限元分析土石坝渗流问题

库仑产品库仑沈工 发表了文章 • 0 个评论 • 3986 次浏览 • 2017-04-10 11:36 • 来自相关话题

  本工程案例为碎石土心墙堆石坝,坝高136m,坝顶宽12m,坝底宽71m。图1为坝体剖面图。图1 坝体剖面图  首先在工况阶段[建模]中进行分析设置、添加岩土材料、导入几何模型及划分网格等。GEO5支持直接导入在CAD等软件中已经建好的DXF模型文件。图2 导入坝体模型  在[分析设置]中选择分析类型为“稳定流”,勾选“详细结果”复选框。 图3 分析设置  添加完所有的坝体材料以后,在[指定材料]界面中将材料指定给各自对应的部位。 图4 指定坝体材料  接着通过创建自由线来确定混凝土防渗墙在地基中的位置,最后对模型进行网格划分操作。图5 生成网格  点击进入工况阶段[1],在[梁]设置界面中添加防渗墙。接着通过[线渗透边界]设置渗流边界条件,这里将上游水位高程设置为62.0m,下游边界类型设置为“溢出边界”。 图6 边界条件设置  设置好边界条件以后,在[分析]界面中点击[开始分析按钮],通过短暂的求解即可得到坝体的渗流特征计算结果。图7 孔隙水压力分布云图图8 总水头分布云图图9 渗流矢量图 查看全部
<p>  本工程案例为碎石土心墙堆石坝,坝高136m,坝顶宽12m,坝底宽71m。图1为坝体剖面图。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1597301658445588.png" alt="image.png"/></p><p style="text-align: center;">图1 坝体剖面图</p><p>  首先在工况阶段[建模]中进行分析设置、添加岩土材料、导入几何模型及划分网格等。GEO5支持直接导入在CAD等软件中已经建好的DXF模型文件。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1597301672475580.png" alt="image.png"/></p><p style="text-align: center;">图2 导入坝体模型</p><p>  在[分析设置]中选择分析类型为“稳定流”,勾选“详细结果”复选框。</p><p style="text-align: center;">&nbsp;<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1597301684988915.png" alt="image.png"/></p><p style="text-align: center;">图3 分析设置</p><p>  添加完所有的坝体材料以后,在[指定材料]界面中将材料指定给各自对应的部位。</p><p style="text-align: center;">&nbsp;<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1597301694775477.png" alt="image.png"/></p><p style="text-align: center;">图4 指定坝体材料</p><p>  接着通过创建自由线来确定混凝土防渗墙在地基中的位置,最后对模型进行网格划分操作。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1597301706437722.png" alt="image.png"/></p><p style="text-align: center;">图5 生成网格</p><p>  点击进入工况阶段[1],在[梁]设置界面中添加防渗墙。接着通过[线渗透边界]设置渗流边界条件,这里将上游水位高程设置为62.0m,下游边界类型设置为“溢出边界”。</p><p style="text-align: center;">&nbsp;<img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1597301718861785.png" alt="image.png"/></p><p style="text-align: center;">图6 边界条件设置</p><p>  设置好边界条件以后,在[分析]界面中点击[开始分析按钮],通过短暂的求解即可得到坝体的渗流特征计算结果。</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1597301730747915.png" alt="image.png"/></p><p style="text-align: center;">图7 孔隙水压力分布云图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1597301742458576.png" alt="image.png"/></p><p style="text-align: center;">图8 总水头分布云图</p><p style="text-align: center;"><img src="https://wen.kulunsoft.com/uplo ... ot%3B title="1597301755684981.png" alt="image.png"/></p><p style="text-align: center;">图9 渗流矢量图</p>